Skip to main content
Log in

Reactivity of NO2 and CO2 with hardened cement paste containing activated carbon

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The development of building materials to reduce the concentration of NO2 is growing interest in a world where the air quality in urban areas is affected by the car traffic. The main binder in concrete is the cement paste that is partly composed of calcium hydroxide. This alkaline hydrate composing the hardened cement paste shows a high BET surface area (close to 100 m2.g−1) and can absorb low-concentrations of NO2. However, the presence of CO2 in the atmosphere limits the de-polluting effect of reference cement paste, mainly due to carbonation of the alkaline hydrates (reaction leading to the formation of calcium carbonate). The results established in this paper demonstrate that the addition of activated carbon in the cement paste, because of its very high BET surface area (close to 800 m2.g−1) and its specific reactivity with NO2, can significantly improve and prolong the de-polluting effect in presence of CO2 and even after complete carbonation of the surface of the cement paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Mitchell, J. Zhang, T. Sigsgaard, M. Jantunen, P.J. Lioy, R. Samson, M.H. Karol, Environ. Health Perspect 115, 958 (2007)

    Article  Google Scholar 

  2. P. Blondeau, V. Iordache, O. Poupard, D. Genin, F. Allard, Indoor Air 15, 2 (2005)

    Article  Google Scholar 

  3. C.K. Wilkins, P.A. Clausen, P. Wolkoff, S.T. Larsen, M. Hammer, K. Larsen, V. Hansen, G.D. Nielsen, Environ. Health Perspectives 109, 937 (2001)

    Article  Google Scholar 

  4. C. Sedlmair, K. Seshan, A. Jentys, J.A. Lercher, J. Catal. 214, 308 (2003)

    Article  Google Scholar 

  5. C.M.L. Scholz, V.R. Gangwal, J.H.B.J. Hoebink, J.C. Schouten, Appl. Catal. B: Environ. 70, 226 (2007)

    Article  Google Scholar 

  6. A. Challoner, L. Gill, Build. Environ. 80, 159 (2014)

    Article  Google Scholar 

  7. H.F.W. Taylor, Cement Chemistry, 2nd ed. (Thomas Telford Publishing, London, 1997)

  8. I. Odler, Cem. Concr. Res. 33, 1049 (2003)

    Google Scholar 

  9. A.J. Allen, J.J. Thomas, H.M. Jennings, Nat. Mater. 6, 311 (2007)

    Article  Google Scholar 

  10. N.J. Krou, I. Batonneau-Gener, T. Belin, S. Mignard, M. Horgnies, I. Dubois-Brugger, Cem. Concr. Res. 43, 51 (2013)

    Article  Google Scholar 

  11. H.M. Jennings, Cem. Concr. Res. 30, 101 (2000)

    Article  Google Scholar 

  12. W.S. Epling, L.E. Campbell, A. Yezerets, N.W. Currier, J.E. Parks, Catal. Rev. Sci. Eng. 46, 163 (2004)

    Article  Google Scholar 

  13. G. Liu, P.-X. Gao, Catal. Sci. Technol. 1, 552 (2011)

    Article  Google Scholar 

  14. E. Fridell, M. Skoglundh, B. Westerberg, S. Johansson, G. Smedler, J. Catal. 183, 196 (1999)

    Article  Google Scholar 

  15. M. Horgnies, I. Dubois-Brugger, E.M. Gartner, Cem. Concr. Res. 42, 1348 (2012)

    Article  Google Scholar 

  16. X. Gao, S. Liu, Y. Zhang, Z. Luo, M. Ni, K. Cen, Fuel Process. Technol. 92, 139 (2011)

    Article  Google Scholar 

  17. M. Jeguirim, V. Tschamber, J.F. Brilhac, P. Ehrburger, J. Anal. Appl. Pyrolysis 72, 171 (2004)

    Article  Google Scholar 

  18. H. Muckenhuber, H. Grothe, Carbon 44, 546 (2006)

    Article  Google Scholar 

  19. N. Shirahama, S.H. Moon, K.-H. Choi, T. Enjoji, S. Kawano, Y. Korai, M. Tanoura, I. Mochida, Carbon 40, 2605 (2002)

    Article  Google Scholar 

  20. W.J. Zhang, A. Bagreev, F. Rasouli, Indust. Eng. Chem. Res. 47, 4358 (2008)

    Article  Google Scholar 

  21. M. Thiery, G. Villain, P. Dangla, G. Platet, Cem. Concr. Res. 37, 1047 (2007)

    Article  Google Scholar 

  22. M. Horgnies, J.J. Chen, E. Darque-Ceretti, Surf. Interf. Anal. 45, 830 (2013)

    Article  Google Scholar 

  23. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  Google Scholar 

  24. V. Baroghel-Bouny, Cem. Concr. Res. 37, 414 (2007)

    Article  Google Scholar 

  25. L.J. Ignarro, J.M. Fukuto, J.M. Griscavage, N.E. Rogers, R.E. Byrns, Proc. Nat. Acad. Sci. 90, 8103 (1993)

    Article  Google Scholar 

  26. M. Horgnies, E. Darque-Ceretti, M. Bayle, E. Gueit, M. Aucouturier, Surf. Interf. Anal. 46, 791 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Horgnies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horgnies, M., Dubois-Brugger, I., Krou, N. et al. Reactivity of NO2 and CO2 with hardened cement paste containing activated carbon. Eur. Phys. J. Spec. Top. 224, 1985–1994 (2015). https://doi.org/10.1140/epjst/e2015-02515-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02515-7

Keywords

Navigation