Skip to main content

Advertisement

Log in

Scaling electron acceleration in the bubble regime for upcoming lasers

  • Regular Article
  • IZEST Science: Laser Driven Particle Acceleration
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Electron acceleration in the laser-plasma bubble appeared to be the most successful regime of laser wake field acceleration in the last decade. The laser technology became mature enough to generate short and relativistically intense pulses required to reach the bubble regime naturally delivering quasi-monoenergetic bunches of relativistic electrons. The upcoming laser technology projects are promising short pulses with many times more energy than the existing ones. The natural question is how will the bubble regime scale with the available laser energy. We present here a parametric study of laser-plasma acceleration in the bubble regime using full three dimensional particle-in-cell simulations and compare numerical results with the analytical scalings from the relativistic laser-plasma similarity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tajima, T. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  2. D. Gordon, K. Tzeng, C. Clayton, A.E. Dangor, V. Malka, K.A. Marsh, A. Modena, W.B. Mori, P. Muggli, Z. Najmudin, D. Neely, C. Danson, C. Joshi, Phys. Rev. Lett. 80, 2133 (1998)

    Article  ADS  Google Scholar 

  3. I. Kostyukov, A. Pukhov, S. Kiselev, Phys. Plasmas 46, 12B (2004)

    Google Scholar 

  4. S.M. Hooker, Nature Photon. 7, 775 (2013)

    Article  ADS  Google Scholar 

  5. C. Joshi, A. Caldwell, Plasma Accelerators in Accelerators and Colliders Landolt-Brnstein – Group I Elementary Particles, Nuclei and Atoms, 2013), p. 592

  6. V. Malka Laser Plasma Accelerators, in Laser-Plasma Interactions and Applications, Scottish Graduate Series, (2013), p. 281

  7. H. Motz, J. Appl. Phys. 22, 527 (1951)

    Article  ADS  MATH  Google Scholar 

  8. P. Luchini, H. Motz, Undulators and Free-electron Lasers (Oxford University Press, 1990)

  9. H. Chapman, et al., Nature Phys. 2, 839 (2006)

    Article  ADS  Google Scholar 

  10. V. Ayvazyan, et al., EPJ D 37, 297 (2006)

    Article  ADS  Google Scholar 

  11. E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996)

    Article  ADS  Google Scholar 

  12. A. Pukhov, IEEE Trans. Plasma Sci. 66, 47 (2003)

    Google Scholar 

  13. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  14. P. Mora, T.M. Antonsen, Phys. Rev. E 53, R2068 (1996)

    Article  ADS  Google Scholar 

  15. A. Pukhov, J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)

    Article  ADS  Google Scholar 

  16. D. Strickland, G. Mourou, Opt. Commu. 56, 219 (1985)

    Article  ADS  Google Scholar 

  17. J. Squier, F. Salin, G. Mourou, D. Harter, Opt. Lett. 16, 324 (1991)

    Article  ADS  Google Scholar 

  18. B. Hidding, K.-U. Amthor, B. Liesfeld, H. Schwoerer, S. Karsch, M. Geissler, L. Veisz, K. Schmid, J.G. Gallacher, S.P. Jamison, D. Jaroszynski, G. Pretzler, R. Sauerbrey, Phys. Rev. Lett. 96, 105004 (2006)

    Article  ADS  Google Scholar 

  19. W.P. Leemans, B. Nagler, A.J. Gonsalves, Cs. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, Nature Phys. 2, 696 (2006)

    Article  ADS  Google Scholar 

  20. P.A. Walker, et al., New J. Phys. 15, 045024 (2013)

    Article  ADS  Google Scholar 

  21. I. Kostyukov, E. Nerush, E. Nerush, A. Pukhov, V. Seredov, Phys. Rev. Lett. 103, 175003 (2009)

    Article  ADS  Google Scholar 

  22. O. Buneman, Phys. Rev. 115, 503 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. J. Dawson, Phys. Fluids 5, 445 (1962)

    Article  ADS  MATH  Google Scholar 

  24. J.P. Verboncoeur, Plasma Phys. Control. Fusion 47, 231 (2005)

    Article  ADS  Google Scholar 

  25. A. Pukhov, J. Plasma Phys. 61, 425 (1999)

    Article  ADS  Google Scholar 

  26. Extreme Light Infrastructure European Project, www.extreme-light-infrastructure.eu

  27. International Center for Zetta- Exawatt Science and Technology, www.izest.polytechnique.edu

  28. G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, Nature Photon. 7, 258261 (2013)

    Article  Google Scholar 

  29. Exawatt Center for Extreme Light Studies, www.xcels.iapras.ru

  30. M. Tzoufras, et al., Phys. Rev. Lett. 101, 145002 (2008)

    Article  ADS  Google Scholar 

  31. S. Gordienko, A. Pukhov, Phys. Plasmas 12, 043109 (2005)

    Article  ADS  Google Scholar 

  32. A. Pukhov, S. Gordienko, Phil. Trans. R. Soc. A 364, 623 (2006)

    Article  ADS  Google Scholar 

  33. S. Wang, et al., PRL 88, 135004 (2002)

    Article  ADS  Google Scholar 

  34. H.-P. Schlenvoigt, K. Haupt, A. Debus, F. Budde, O. Jackel, S. Pfotenhauer, H. Schwoerer, E. Rohwer, J.G. Gallacher, E. Brunetti, R.P. Shanks, S.M. Wiggin, D.A. Jaroszynski, Nature Phys. 4, 130 (2008)

    Article  ADS  Google Scholar 

  35. L.D. Landau, E.M. Lifshitz, Butterworth-Heinemann, 4 edition, January 15 (1980)

  36. J.W. Connor, B. Taylor, Nuclear Fusion 17, 1047 (1977)

    Article  ADS  Google Scholar 

  37. B.B. Kadomtsev, Sov. J. Plasma Physics 1, 295 (1975)

    Google Scholar 

  38. V. Chandrasekhar, Hydrodynamic and hydromagnetic stability (Clarendon Press, Oxford, 1961), p. 652

  39. E. S. Taylor, Dimensional analysis for engineers (Clarendon Press, Oxford, 1974), p. 162

  40. J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)

    Article  ADS  Google Scholar 

  41. J.-L. Vay, C.G.R. Geddes, et al., Phys. Plasmas 18, 030701 (2011)

    Article  ADS  Google Scholar 

  42. S.F. Martins, R.A. Fonseca, W. Lu, et al., Nature Phys. 6, 311 (2010)

    Article  ADS  Google Scholar 

  43. K.K. Magesh Kumar, V.K. Tripathi, Laser Part. Beams 30, 575 (2012)

    Article  ADS  Google Scholar 

  44. J.-L. Vay, C.G.R. Geddes, E. Esarey, et al., Phys. Plasmas 18, 123103 (2011)

    Article  ADS  Google Scholar 

  45. X. Xu, P. Yu, S.F. Martins, et al., Journ. Comp. Phys. 184, 2503 (2013)

    ADS  MathSciNet  Google Scholar 

  46. J.-L. Vay, C.G.R. Geddes, E. Cormier-Michel, et al., Journ. Comp. Phys. 230, 5908592 (2011)

    Article  Google Scholar 

  47. S.F. Martins, R.A. Fonseca, L.O. Silva, et al., Comp. Phys. Comm. 181, 869 (2010)

    Article  ADS  MATH  Google Scholar 

  48. B.B. Godfrey, J.-L. Vay, J. Comp. Phys. 248, 33

  49. A.I. Akhiezer, R.V. Polovin, Zh. Eksp. Teor. Fiz. 30 915 (1956)

    Google Scholar 

  50. P. Sprangle, C.-M. Tang, E. Esarey, IEEE Trans. Plasma Sci. 15, 2 (1987)

    Article  Google Scholar 

  51. I. Kostyukhov, S. Kiselev, A. Pukhov, Phys. Plasmas 10, 4818 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen, O., Tückmantel, T. & Pukhov, A. Scaling electron acceleration in the bubble regime for upcoming lasers. Eur. Phys. J. Spec. Top. 223, 1017–1030 (2014). https://doi.org/10.1140/epjst/e2014-02152-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02152-8

Keywords

Navigation