Skip to main content
Log in

Carrier-envelope phase controlled dynamics of relativistic electron beams in a laser-wakefield accelerator

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In laser-wakefield acceleration, an ultra-intense laser pulse is focused into an underdense plasma to accelerate electrons to relativistic velocities. In most cases, the pulses consist of multiple optical cycles and the interaction is well described in the framework of the ponderomotive force where only the envelope of the laser has to be considered. But when using single-cycle pulses, the ponderomotive approximation breaks down, and the actual waveform of the laser has to be taken into account. In this paper, we use near-single-cycle laser pulses to drive a laser-wakefield accelerator. We observe variations of the electron beam pointing on the order of 10 mrad in the polarization direction, as well as 30% variations of the beam charge, locked to the value of the controlled laser carrier-envelope phase, in both nitrogen and helium plasma. Those findings are explained through particle-in-cell simulations indicating that low-emittance, ultrashort electron bunches are periodically injected off-axis by the transversally oscillating bubble associated with the slipping carrier-envelope phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43(4), 267–270 (1979). https://doi.org/10.1103/PhysRevLett.43.267

    Article  ADS  Google Scholar 

  2. A.J. Gonsalves et al., Petawatt laser guiding and electron beam acceleration to 8 gev in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019). https://doi.org/10.1103/PhysRevLett.122.084801

    Article  ADS  Google Scholar 

  3. A. Rousse et al., Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93(13), 135005 (2004). https://doi.org/10.1103/PhysRevLett.93.135005

    Article  ADS  Google Scholar 

  4. K. Ta Phuoc et al., All-optical compton gamma-ray source. Nat. Photon. 6(5), 308–311 (2012). https://doi.org/10.1038/nphoton.2012.82

    Article  ADS  Google Scholar 

  5. S. Chen et al., Mev-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons. Phys. Rev. Lett. 110, 155003 (2013). https://doi.org/10.1103/PhysRevLett.110.155003

    Article  ADS  Google Scholar 

  6. W. Wang et al., Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595(7868), 516–520 (2021). https://doi.org/10.1038/s41586-021-03678-x

    Article  ADS  Google Scholar 

  7. P. Mora, T.M. Antonsen Jr., Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas 4(1), 217–229 (1997). https://doi.org/10.1063/1.872134

    Article  ADS  Google Scholar 

  8. D. Guénot, et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 11(5), 293–296 (2017). https://www.nature.com/articles/nphoton.2017.46. https://doi.org/10.1038/nphoton.2017.46

  9. L. Rovige et al., Demonstration of stable long-term operation of a kilohertz laser-plasma accelerator. Phys. Rev. Accel. Beams 23, 093401 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.093401

    Article  ADS  Google Scholar 

  10. F. Salehi, M. Le, L. Railing, M. Kolesik, H. Milchberg, Laser-accelerated, low-divergence 15-mev quasimonoenergetic electron bunches at 1 khz. Phys. Rev. X 11(2), 021055 (2021). https://doi.org/10.1103/PhysRevX.11.021055

    Article  Google Scholar 

  11. Z.-H. He et al., Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at khz repetition rate. Appl. Phys. Lett. 102(6), 064104 (2013). https://doi.org/10.1063/1.4792057

    Article  ADS  Google Scholar 

  12. Z.-H. He et al., Capturing structural dynamics in crystalline silicon using chirped electrons from a laser wakefield accelerator. Sci. Rep. 6(1), 36224 (2016). https://doi.org/10.1038/srep36224

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Faure et al., Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction. Phys. Rev. Accel. Beams 19(2), 021302 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.021302

    Article  ADS  Google Scholar 

  14. B. Hidding et al., Laser-plasma-based space radiation reproduction in the laboratory. Sci. Rep. 7(1), 42354 (2017). https://doi.org/10.1038/srep42354

    Article  ADS  Google Scholar 

  15. O. Rigaud et al., Exploring ultrashort high-energy electron-induced damage in human carcinoma cells. Cell Death Dis. 1(9), e73–e73 (2010). https://doi.org/10.1038/cddis.2010.46

    Article  Google Scholar 

  16. O. Lundh et al., Comparison of measured with calculated dose distribution from a 120-mev electron beam from a laser-plasma accelerator. Med. Phys. 39(6Part1), 3501–3508 (2012). https://doi.org/10.1118/1.4719962

    Article  Google Scholar 

  17. M. Cavallone et al., Dosimetric characterisation and application to radiation biology of a khz laser-driven electron beam. Appl. Phys. B 127(4), 57 (2021). https://doi.org/10.1007/s00340-021-07610-z

    Article  ADS  Google Scholar 

  18. T.L. Audet et al., Ultrashort, mev-scale laser-plasma positron source for positron annihilation lifetime spectroscopy. Phys. Rev. Accel. Beams 24, 073402 (2021). https://doi.org/10.1103/PhysRevAccelBeams.24.073402

    Article  ADS  Google Scholar 

  19. E.N. Nerush, I.Y. Kostyukov, Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses. Phys. Rev. Lett. 103(3), 035001 (2009). https://doi.org/10.1103/PhysRevLett.103.035001

    Article  ADS  Google Scholar 

  20. J. Faure et al., A review of recent progress on laser-plasma acceleration at kHz repetition rate. Plasma Phys. Control. Fusion 61(1), 014012 (2018). https://doi.org/10.1088/1361-6587/aae047

    Article  ADS  Google Scholar 

  21. J. Huijts, I.A. Andriyash, L. Rovige, A. Vernier, J. Faure, Identifying observable carrier-envelope phase effects in laser wakefield acceleration with near-single-cycle pulses. Phys. Plasmas 28(4), 043101 (2021). https://doi.org/10.1063/5.0037925

    Article  ADS  Google Scholar 

  22. S. Xu et al., Periodic self-injection of electrons in a few-cycle laser driven oscillating plasma wake. AIP Adv. 10(9), 095310 (2020). https://doi.org/10.1063/5.0014691

    Article  ADS  Google Scholar 

  23. J. Kim, T. Wang, V. Khudik, G. Shvets, Subfemtosecond wakefield injector and accelerator based on an undulating plasma bubble controlled by a laser phase. Phys. Rev. Lett. 127, 164801 (2021). https://doi.org/10.1103/PhysRevLett.127.164801

    Article  ADS  Google Scholar 

  24. J. Huijts et al., Waveform control of relativistic electron dynamics in laser-plasma acceleration. Phys. Rev. X 12, 011036 (2022). https://doi.org/10.1103/PhysRevX.12.011036

    Article  Google Scholar 

  25. A.F. Lifschitz, V. Malka, Optical phase effects in electron wakefield acceleration using few-cycle laser pulses. New J. Phys. 14(5), 053045 (2012). https://doi.org/10.1088/1367-2630/14/5/053045

    Article  ADS  Google Scholar 

  26. D. Guénot, et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 11(5), 293–296 (2017). http://www.nature.com/articles/nphoton.2017.46. https://doi.org/10.1038/nphoton.2017.46

  27. F. Böhle et al., Compression of CEP-stable multi-mJ laser pulses down to 4fs in long hollow fibers. Laser Phys. Lett. 11(9), 095401 (2014). https://doi.org/10.1088/1612-2011/11/9/095401

    Article  ADS  Google Scholar 

  28. M. Ouillé, et al. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. Light. Sci. Appl. 9(1), 1–9 (2020). https://www.nature.com/articles/s41377-020-0280-5. https://doi.org/10.1038/s41377-020-0280-5

  29. K. Schmid, L. Veisz, Supersonic gas jets for laser-plasma experiments. Rev. Sci. Instrum. 83(5), 053304 (2012). https://doi.org/10.1063/1.4719915

    Article  ADS  Google Scholar 

  30. J. Primot, L. Sogno, Achromatic three-wave (or more) lateral shearing interferometer. JOSA A12(12), 2679–2685 (1995). http://opg.optica.org/josaa/abstract.cfm?URI=josaa-12-12-2679

  31. J. Primot, N. Guérineau, Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard. Appl. Opt. 39(31), 5715–5720 (2000). http://opg.optica.org/ao/abstract.cfm?URI=ao-39-31-5715

  32. M. Kakehata, et al. Single-shot measurement of carrier-envelope phase changes by spectral interferometry. Opt. Lett. 26(18), 1436–1438 (2001). URL http://opg.optica.org/ol/abstract.cfm?URI=ol-26-18-1436

  33. F. Lücking, V. Crozatier, N. Forget, A. Assion, F. Krausz, Approaching the limits of carrier-envelope phase stability in a millijoule-class amplifier. Opt. Lett. 39(13), 3884–3887 (2014). URL http://opg.optica.org/ol/abstract.cfm?URI=ol-39-13-3884

  34. R. Lehe, M. Kirchen, I.A. Andriyash, B.B. Godfrey, J.-L. Vay, A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm. Comput. Phys. Commun. 203, 66–82 (2016). https://doi.org/10.1016/j.cpc.2016.02.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. Ammosov, N. Delone, V. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP (1986). https://doi.org/10.1117/12.938695

    Article  Google Scholar 

  36. S. Bulanov, N. Naumova, F. Pegoraro, J. Sakai, Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58(5), R5257–R5260 (1998). https://doi.org/10.1103/PhysRevE.58.R5257

    Article  ADS  Google Scholar 

  37. P. Tomassini et al., Production of high-quality electron beams in numerical experiments of laser wakefield acceleration with longitudinal wave breaking. Phys. Rev. ST Accel. Beams 6, 121301 (2003). https://doi.org/10.1103/PhysRevSTAB.6.121301

    Article  ADS  Google Scholar 

  38. B. Beaurepaire, A. Lifschitz, J. Faure, Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses. New J. Phys. 16(2), 023023 (2014). https://doi.org/10.1088/1367-2630/16/2/023023

    Article  ADS  Google Scholar 

  39. J. Kim, T. Wang, V. Khudik, G. Shvets, Polarization control of electron injection and acceleration in the plasma by a self steepening laser pulse (2021). https://doi.org/10.48550/ARXIV.2111.03014

  40. R. Rakowski, et al. Transverse oscillating bubble enhanced laser-driven betatron x-ray radiation generation (2022). arXiv:2202.01321

Download references

Acknowledgements

This work was funded by the Agence Nationale de la Recherche under Contract no. ANR-20-CE92-0043-01. Numerical simulations were performed using HPC resources from GENCI-TGCC (Grand Équipement National de Calcul Intensif) (Grant no. 2020-A0090510062) with the IRENE supercomputer. This project has also received funding from the European Union’s Horizon 2020 Research and Innovation program IFAST under Grant Agreement no. 101004730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Rovige.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine, Lionel Poisson.

Appendix 1: PIC simulation results for an initial CEP of \(\pi /2\)

Appendix 1: PIC simulation results for an initial CEP of \(\pi /2\)

Figure 11 shows a similar PIC simulation analysis as in Fig. 6 of the main text, but with an initial CEP shifted by \(\pi /2\). There are again clearly three main injection events, yielding three separate micro-bunches, but now electron are mainly injected from the top (blue) with a negative initial momentum and the total beam points downward at the end of the simulation.

Fig. 11
figure 11

Particle-in-cell simulation of a LPA driven by a 4.0 fs laser in a helium plasma, for an initial CEP of \(\pi /2\). a Snapshot of the wakefield, showing three different injected sub-bunches. Electron density in the (yz)-plane is shown in gray, and injected electrons are displayed in orange (blue) when their pointing is positive (negative) at the end of the simulation. The normalized laser electric field \(E_l/E_0=E_l/(m_{\text {e}}c\omega _0/e)\) (red dashed line) and its envelope (blue solid line) are also shown. b Top: transverse momentum in the polarization direction as a function of propagation distance for two sub-bunches injected with a positive (bunch +) and negative (bunch −) initial transverse momentum, corresponding to opposite signs of CEP-dependent bubble asymmetry at the moment of injection. Bottom: longitudinal momentum of the two sub-bunches. Both momenta are normalized to \({m}_{\mathrm{ec}}\). c Asymmetry of the wakefield in the y-direction (red) and difference in the mean position of the bubble in z between the top part (y > 0) and the bottom part (y < 0) of the wake (black). Charge injection rate for the two electron populations shown in a with corresponding colors, as a function of the simulation time for an initial CEP of \(\pi /2\). The gray dashed lines highlight the three main injection events

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovige, L., Monzac, J., Huijts, J. et al. Carrier-envelope phase controlled dynamics of relativistic electron beams in a laser-wakefield accelerator. Eur. Phys. J. Spec. Top. 232, 2265–2276 (2023). https://doi.org/10.1140/epjs/s11734-022-00675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00675-7

Navigation