Skip to main content
Log in

Is it the shape of the cavity, or the shape of the water in the cavity?

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Historical interpretations of the thermodynamics characterizing biomolecular recognition have marginalized the role of water. An important (even, perhaps, dominant) contribution to molecular recognition in water comes from the “hydrophobic effect,” in which non-polar portions of a ligand interact preferentially with non-polar regions of a protein. Water surrounds the ligand, and water fills the binding pocket of the protein: when the protein-ligand complex forms, and hydrophobic surfaces of the binding pocket and the ligand approach one another, the molecules (and hydrogen-bonded networks of molecules) of water associated with both surfaces rearrange and, in part, entirely escape into the bulk solution. It is now clear that neither of the two most commonly cited rationalizations for the hydrophobic effect—an entropy-dominated hydrophobic effect, in which ordered waters at the surface of the ligand, and water at the surface of the protein, are released to the bulk upon binding, and a “lock-and-key” model, in which the surface of a ligand interacts directly with a surface of a protein having a complementary shape–can account for water-mediated interactions between the ligand and the protein, and neither is sufficient to account for the experimental observation of both entropy- andenthalpy-dominated hydrophobic effects. What is now clear is that there is no single hydrophobic effect, with a universally applicable, common, thermodynamic description: different processes (i.e., partitioning between phases of different hydrophobicity, aggregation in water, and binding) with different thermodynamics, depend on the molecular-level details of the structures of the molecules involved, and of the aggregates that form. A “water-centric” description of the hydrophobic effect in biomolecular recognition focuses on the structures of water surrounding the ligand, and of water filling the binding pocket of the protein, both before and after binding. This view attributes the hydrophobic effect to changes in the free energy of the networks of hydrogen bonds that are formed, broken, or re-arranged when two hydrophobic surfaces approach (but do not necessarily contact) one another. The details of the molecular topography (and the polar character) of the mole- cular surfaces play an important role in determining the structure of these networks of hydrogen-bonded waters, and in the thermodynamic description of the hydrophobic effect(s). Theorists have led the formulation of this “water-centric view”, although experiments are now supplying support for it. It poses complex problems for would-be “designers” of protein-ligand interactions, and for so-called “rational drug design”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Frank, M.W. Evans, J. Chem. Phys. 33, 507 (1945)

    ADS  Google Scholar 

  2. W. Kauzmann, Adv. Prot. Chem. 14, 1 (1959)

    Google Scholar 

  3. C. Tanford, Science 200, 1012 (1978)

    ADS  Google Scholar 

  4. C. Tanford, Proc. Natl. Acad. Sci., U.S.A. 76, 4175 (1979)

    ADS  Google Scholar 

  5. G. M. Whitesides, E. Simanek, J. Mathias, C. Seto, D. Chin, M. Mammen, D. Gordon, Acc. Chem. Res. 28, 37 (1995)

    Google Scholar 

  6. M. Barboiu, J. Lehn, Proc. Natl. Acad. Sci., U.S.A. 99, 5201 (2002)

    ADS  Google Scholar 

  7. H. Schneider, Angew. Chem., Int. Ed. 30, 1417 (1991)

    ADS  Google Scholar 

  8. J. Rebek, Acc. Chem. Res. 23, 399 (1990)

    Google Scholar 

  9. K.N. Houk, A.G. Leach, S.P. Kim, X. Zhang, Angew. Chem., Int. Ed. 42, 4872 (2003)

    Google Scholar 

  10. Y.K. Cheng, P.J. Rossky, Nature 392, 696 (1998)

    ADS  Google Scholar 

  11. P. Ball, Life’s Matrix: a Biography of Water (University of California Press, Los Angeles, 2001)

  12. P. Ball, Chem. Rev. 108, 74 (2008)

    Google Scholar 

  13. N.T. Southall, K.A. Dill, A.D.J. Haymet, J. Phys. Chem. B 106, 521 (2002)

    Google Scholar 

  14. M.C. Chervenak, E.J. Toone, J. Am. Chem. Soc. 116, 10533 (1994)

    Google Scholar 

  15. W. Blokzijl, J.B.F.N. Engberts, Angew. Chem., Int. Ed. 32, 1545 (1993)

    Google Scholar 

  16. P. Tompa, K.H. Han, Phys. Today 65, 64 (2012)

    Google Scholar 

  17. V. Uversky, Protein Sci. 11, 739 (2002)

    Google Scholar 

  18. S. Lee, D. Kim, J. Han, E. Cha, J. Lim, Y. Cho, C. Lee, K.H. Han, Curr. Protein Pept. Sci. 13, 34 (2012)

    Google Scholar 

  19. J.R. Beasley, D.F. Doyle, L. Chen, D.S. Cohen, B.R. Fine, G.J. Pielak, Proteins: Struct. Funct. Bioinf. 49, 398 (2002)

    Google Scholar 

  20. A. Cornish-Bowden, J. Biosci. 27, 121 (2002)

    Google Scholar 

  21. K. Sharp, Protein Sci. 10, 661 (2001)

    Google Scholar 

  22. R.R. Krug, W.G. Hunter, R.A. Grieger, J. Phys. Chem. 80, 2335 (1976)

    Google Scholar 

  23. R.R. Krug, W.G. Hunter, R.A. Grieger, Nature 261, 566 (1976)

    ADS  Google Scholar 

  24. O. Exner, S. Bohm, New J. Chem. 32, 1449 (2008)

    Google Scholar 

  25. C. Clarke, R.J. Woods, J. Gluska, A. Cooper, M.A. Nutley, G.J. Boons, J. Am. Chem. Soc. 123, 12238 (2001)

    Google Scholar 

  26. M.S. Searle, M.S. Westwell, D.H. Williams, J. Chem. Soc., Perkin Trans. 2 2, 141 (1995)

    Google Scholar 

  27. P.W. Snyder, J. Mecinovic, D.T. Moustakas, S.W. Thomas, M. Harder, E.T. Mack, M.R. Lockett, A. Heroux, W. Sherman, G.M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 108, 17889 (2012)

    ADS  Google Scholar 

  28. V.M. Krishnamurthy, B.R. Bohall, V. Semetey, G.M. Whitesides, J. Am. Chem. Soc. 128, 5802 (2006)

    Google Scholar 

  29. V.M. Krishnamurthy, G.K. Kaufman, A.R. Urbach, I. Gitlin, K.L. Gudiksen, D.B. Weibel, G.M. Whitesides, Chem. Rev. 108, 946 (2008)

    Google Scholar 

  30. D. Ford, J. Am. Chem. Soc. 127, 16167 (2005)

    Google Scholar 

  31. J.D. Dunitz, Chem. Biol. 2, 709 (1995)

    Google Scholar 

  32. D.H. Williams, E. Stephens, D.P. O’Brien, M. Zhou, Angew. Chem., Int. Ed. 43, 6596 (2004)

    Google Scholar 

  33. J.D. Dunitz, A. Gavezzotti, Angew. Chem., Int. Ed. 44, 1766 (2005)

    Google Scholar 

  34. P. Buchanan, N. Aldiwan, A.K. Soper, J.L. Creek, C.A. Koh, Chem. Phys. Lett. 415, 89 (2005)

    ADS  Google Scholar 

  35. P. Buchanan, A. Soper, H. Thompson, R. Westacott, J. Creek, G. Hobson, C. Koh, J. Chem. Phys. 123, 164507 (2005)

    ADS  Google Scholar 

  36. J. Turner, A.K. Soper, J. Finney, Mol. Phys. 70, 679 (1990)

    ADS  Google Scholar 

  37. W. Jorgensen, Science 254, 954 (1991)

    ADS  Google Scholar 

  38. S. Pal, J. Peon, A.H. Zewail, Proc. Natl. Acad. Sci., U.S.A. 99, 1763 (2002)

    ADS  Google Scholar 

  39. T. Arikawa, M. Nagai, K. Tanaka, Chem. Phys. Lett. 457, 12 (2008)

    ADS  Google Scholar 

  40. S. Balasubramanian, S. Pal, B. Bagchi, Phys. Rev. Lett. 89, 115505 (2002)

    ADS  Google Scholar 

  41. Y. Levy, J. Onuchic, Ann. Rev. Biophys. Biomol. Struct. 35, 389 (2006)

    Google Scholar 

  42. A. Der, L. Kelemen, L. Fabian, S. Taneva, E. Fodor, T. Pali, A. Cupane, M. Cacace, J. Ramsden, J. Phys. Chem. B 111, 5344 (2007)

    Google Scholar 

  43. M. Grossman, B. Born, M. Heyden, D. Tworowski, G. Fields, I. Sagi, M. Havenith, Nat. Struct. Mol. Biol. 18, 1102 (2011)

    Google Scholar 

  44. E. Eisenmesser, D. Bosco, M. Akke, D. Kern, Science 295, 1520 (2002)

    ADS  Google Scholar 

  45. X. Jordanides, M. Lang, X. Song, G. Fleming, J. Phys. Chem. B 103, 7995 (1999)

    Google Scholar 

  46. N. Nandi, K. Bhattacharyya, B. Bagchi, Chem. Rev. 100, 2013 (2000)

    Google Scholar 

  47. K. Bhattacharyya, Acc. Chem. Res. 36, 95 (2003)

    Google Scholar 

  48. L. Palmer, J. Rebek, Org. Biomol. Chem. 2, 3051 (2004)

    Google Scholar 

  49. J. Hansen, E. Pines, G. Fleming, J. Phys. Chem. 96, 6904 (1992)

    Google Scholar 

  50. A. Douhal, Chem. Rev. 104, 1955 (2004)

    Google Scholar 

  51. T.M. Truskett, P.G. Debenedetti, S. Sastry, S. Torquato, J. Chem. Phys. 111, 2647 (1999)

    ADS  Google Scholar 

  52. S. Matysiak, P.G. Debenedetti, P.J. Rossky, J. Phys. Chem. B 115, 14859 (2011)

    Google Scholar 

  53. T.M. Truskett, K.A. Dill, J. Chem. Phys. 117, 5101 (2002)

    ADS  Google Scholar 

  54. F. Weinhold, J. Chem. Phys. 109, 373 (1998)

    ADS  Google Scholar 

  55. N. Kobko, L. Paraskevas, E. del Rio, J. Dannenberg, J. J. Am. Chem. Soc. 123, 4248 (2001)

    Google Scholar 

  56. A. Masunov, J. Dannenberg, J. Phys. Chem. B 104, 806 (2000)

    Google Scholar 

  57. A. Surolia, N. Sharon, F.P. Schwarz, J. Biol. Chem. 271, 17679 (1996)

    Google Scholar 

  58. G. Bradbrook, J. Forshaw, S. Perez, Eur. J. Biochem. 267, 4545 (2000)

    Google Scholar 

  59. G.A. Jeffrey, Acc. Chem. Res. 2, 344 (1969)

    Google Scholar 

  60. J.H. Hildebrand, Proc. Natl. Acad. Sci., U.S.A. 76, 194 (1979)

    ADS  Google Scholar 

  61. K.A. Sharp, J.M. Vanderkooi, Acc. Chem. Res. 43, 231 (2010)

    Google Scholar 

  62. F.H. Stillinger, J. Solut. Chem. 2, 141 (1973)

    Google Scholar 

  63. K. Lum, D. Chandler, J.D. Weeks, J. Phys. Chem. B 103, 4570 (1999)

    Google Scholar 

  64. L.R. Pratt, A. Pohorille, Chem. Rev. 102, 2671 (2002)

    Google Scholar 

  65. D. Chandler, Nature 437, 640 (2005)

    ADS  Google Scholar 

  66. D. Chandler, Nature 445, 831 (2007)

    ADS  Google Scholar 

  67. L.M. Salonen, M. Ellermann, F. Diederich, Angew. Chem., Int. Ed. 50, 4808 (2011)

    Google Scholar 

  68. P.D. Ross, S. Subramanian, Biochemistry 20, 3096 (1981)

    Google Scholar 

  69. W.P. Jencks, Catalysis in Chemistry and Enzymology, 1st edn. (McGraw-Hill, New York, 1969)

  70. J. Gordon, W.P. Jencks, Biochemistry 2, 47 (1963)

    Google Scholar 

  71. D.B. Smithrud, T.B. Wyman, F. Diederich, J. Am. Chem. Soc. 113, 5420 (1991)

    Google Scholar 

  72. K. Silverstein, A. Haymet, K.A. Dill, J. Am. Chem. Soc. 120, 3166 (1998)

    Google Scholar 

  73. K.A. Dill, T.M. Truskett, V. Vlachy, B. Hribar-Lee, Ann. Rev. Biophys. Biomol. Struct. 34, 173 (2005)

    Google Scholar 

  74. T. Urbic, V. Viachy, K.A. Dill, J. Phys. Chem. B 110, 4963 (2006)

    Google Scholar 

  75. R.U. Lemieux, Acc. Chem. Res. 29, 373 (1996)

    Google Scholar 

  76. B.A. Williams, M.C. Chervenak, E.J. Toone, J. Biol. Chem. 267, 22907 (1992)

    Google Scholar 

  77. J.E. Ladbury, J.G. Wright, J.M. Sturtevant, P.B. Sigler, J. Mol. Biol. 238, 669 (1994)

    Google Scholar 

  78. P. Liu, X. Huang, R. Zhou, B.J. Berne, Nature 437, 159 (2005)

    ADS  Google Scholar 

  79. R. Zhou, X. Huang, C.J. Margulis, B.J. Berne, Science 305, 1605 (2004)

    ADS  Google Scholar 

  80. N. Giovambattista, C.F. Lopez, P.J. Rossky, P.G. Debenedetti, Proc. Natl. Acad. Sci. U.S.A. 105, 2274 (2008)

    ADS  Google Scholar 

  81. R. Kumar, J. Schmidt, J. Skinner, J. Chem. Phys. 126, 204107 (2007)

    ADS  Google Scholar 

  82. F. Weinhold, C.R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press, New York, 2005)

  83. A. Reed, L. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Google Scholar 

  84. G.N.I. Clark, C.D. Cappa, J.D. Smith, R.J. Saykally, T. Head-Gordon, Mol. Phys. 108, 1415 (2010)

    ADS  Google Scholar 

  85. H. Bakker, J. Skinner, Chem. Rev. 110, 1498 (2010)

    Google Scholar 

  86. G.L. Richmond, Annu. Rev. Phys. Chem. 52, 257 (2001)

    Google Scholar 

  87. J. Sorenson, G. Hura, R. Glaeser, T. Head-Gordon, J. Chem. Phys. 113, 9149 (2000)

    ADS  Google Scholar 

  88. G. Hura, J. Sorenson, R. Glaeser, T. Head-Gordon, J. Chem. Phys. 113, 9140 (2000)

    ADS  Google Scholar 

  89. A. Soper, Chem. Phys. 258, 121 (2000)

    ADS  Google Scholar 

  90. V. Bezzabotnov, L. Cser, T. Grosz, G. Jancso, Y. Ostanevich, J. Phys. Chem. 96, 976 (1992)

    Google Scholar 

  91. S. Rajamani, T. Truskett, S. Garde, Proc. Natl. Acad. Sci. U.S.A. 102, 9475 (2005)

    ADS  Google Scholar 

  92. Y. Rezus, H. Bakker, Phys. Rev. Lett. 99, 148301 (2007)

    ADS  Google Scholar 

  93. A. Bakulin, C. Liang, T. Jansen, D. Wiersma, H. Bakker, M. Pshenichnikov, Acc. Chem. Res. 42, 1229 (2009)

    Google Scholar 

  94. S. Dixit, J. Crain, W. Poon, J. Finney, A. Soper, Nature 416, 829 (2002)

    ADS  Google Scholar 

  95. Q. Du, R. Superfine, E. Freysz, Y.R. Shen, Phys. Rev. Lett. 70, 2313 (1993)

    ADS  Google Scholar 

  96. E. Raymond, T. Tarbuck, M. Brown, G. Richmond, J. Phys. Chem. B 107, 546 (2003)

    Google Scholar 

  97. C. McFearin, D. Beaman, F. Moore, G. Richmond, J. Phys. Chem. C 113, 1171 (2009)

    Google Scholar 

  98. L.F. Scatena, M.G. Brown, G.L. Richmond, Science 292, 908 (2001)

    ADS  Google Scholar 

  99. J. Tyrrell, P. Attard, Phys. Rev. Lett. 87, 176104 (2001)

    ADS  Google Scholar 

  100. N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, Langmuir 16, 6377 (2000)

    Google Scholar 

  101. R. Steitz, T. Gutberlet, T. Hauss, B. Klösgen, R. Krastev, S. Schemmel, A.C. Simonsen, G.H. Findenegg, Langmuir 19, 2409 (2003)

    Google Scholar 

  102. A. Poynor, L. Hong, I. Robinson, S. Granick, Z. Zhang, P. Fenter, Phys. Rev. Lett. 97, 266101 (2006)

    ADS  Google Scholar 

  103. C. McFearin, G.L. Richmond, J. Mol. Liq. 136, 221 (2007)

    Google Scholar 

  104. Q. Du, E. Freysz, Y. Shen, Phys. Rev. Lett. 72, 238 (1994)

    ADS  Google Scholar 

  105. Y. Shen, V. Ostroverkhov, Chem. Rev. 106, 1140 (2006)

    Google Scholar 

  106. B.J. Berne, J.D. Weeks, R. Zhou, Annu. Rev. Phys. Chem. 60, 85 (2009)

    ADS  Google Scholar 

  107. X. Huang, R. Zhou, B. Berne, J. Phys. Chem. B 109, 3546 (2005)

    Google Scholar 

  108. S. Huang, B. Sjöblom, A.E. Sauer-Eriksson, B.H. Jonsson, Biochemistry 41, 7628 (2002)

    Google Scholar 

  109. J. Rasaiah, S. Garde, G. Hummer, Annu. Rev. Phys. Chem. 59, 713 (2008)

    ADS  Google Scholar 

  110. A. Wallqvist, B. Berne, J. Phys. Chem. 99, 2885 (1995)

    Google Scholar 

  111. T. Lazaridis, J. Phys. Chem. B 102, 3542 (1998)

    Google Scholar 

  112. T. Lazaridis, J. Phys. Chem. B 102, 3531 (1998)

    Google Scholar 

  113. J. Kim, P.S. Cremer, Phys. Chem. Phys. 2, 543 (2001)

    Google Scholar 

  114. X. Chen, S.C. Flores, S.M. Lim, Y. Zhang, T. Yang, J. Kherb, P.S. Cremer, Langmuir 26, 16447 (2010)

    Google Scholar 

  115. G. Kim, M.C. Gurau, J. Kim, P.S. Cremer, Langmuir 18, 2807 (2002)

    Google Scholar 

  116. X. Chen, T. Yang, S. Kataoka, P.S. Cremer, J. Am. Chem. Soc. 129, 12272 (2007)

    Google Scholar 

  117. A.J. Hopkins, C.L. McFearin, G.L. Richmond, Curr. Opin. Solid State Mater. Sci. 9, 19 (2005)

    ADS  Google Scholar 

  118. D. Bearman, E. Robertson, G.L. Richmond, J. Phys. Chem. C 115, 12508 (2011)

    Google Scholar 

  119. M. Quillin, P. Wingfield, B. Matthews, Proc. Natl. Acad. Sci. U.S.A. 103, 19749 (2006)

    ADS  Google Scholar 

  120. A. Amadasi, J. Surface, F. Spyrakis, P. Cozzini, A. Mozzarelli, G. Kellogg, J. Med. Chem. 51, 1063 (2008)

    Google Scholar 

  121. G. Kellogg, D. Abraham, Eur. J. Med. Chem. 35, 651 (2000)

    Google Scholar 

  122. M. Raymer, P. Sanschagrin, W. Punch, S. Venkataraman, E. Goodman, L. Kuhn, J. Mol. Biol. 265, 445 (1997)

    Google Scholar 

  123. A. Garcia-Sosa, R. Mancera, P. Dean, J. Mol. Model. 9, 172 (2003)

    Google Scholar 

  124. M. Verdonk, J. Cole, R. Taylor, J. Mol. Biol. 289, 1093 (1999)

    Google Scholar 

  125. G. Rossato, B. Ernst, A. Vedani, M. Smiesko, J. Chem. Inf. Model. 51, 1867 (2011)

    Google Scholar 

  126. D. Beglov, B. Rioux, J. Phys. Chem. B 101, 7821 (1997)

    Google Scholar 

  127. D. Chandler, J. McCoy, S. Singer, J. Chem. Phys. 85, 5971 (1986)

    ADS  Google Scholar 

  128. D. Chandler, J. McCoy, S. Singer, J. Chem. Phys. 85, 5977 (1986)

    ADS  Google Scholar 

  129. P. Goodford, J. Med. Chem. 28, 849 (1985)

    Google Scholar 

  130. K. Appelt, R. Bacquet, C. Bartlett, C. Booth, S. Freer, M. Fuhry, M. Gehring, S. Herrmann, E. Howland, E. Janson, T. Jones, C. Mohr, E. Moomaw, S. Oatley, R. Ogden, M. Reddy, S. Reich, W. Schoettlin, W. Smith, M. Varney, J. Villafranca, R. Ward, S. Webber, K. Welsh, J. White, J. Med. Chem. 34, 1925 (1991)

    Google Scholar 

  131. M.J. Jedrzejas, S. Singh, W.J. Brouillette, G.M. Air, M. Luo, Proteins: Struct., Funct., Genet. 23, 264 (1995)

    Google Scholar 

  132. H. Wallnoefer, K. Liedl, T. Fox, J. Chem. Inf. Model. 51, 2860 (2011)

    Google Scholar 

  133. C. Barillari, J. Taylor, R. Viner, J. Essex, J. Am. Chem. Soc. 129, 2577 (2007)

    Google Scholar 

  134. A. Abel, T. Young, T. Farid, B. Berne, R. Friesner, J. Am. Chem. Soc. 130, 2817 (2008)

    Google Scholar 

  135. R. Abel, N.K. Salam, J. Shelley, R. Farid, R.A. Friesner, W. Sherman, Chem. Med. Chem. 6, 1049 (2011)

    Google Scholar 

  136. T. Beuming, R. Farid, W. Sherman, Protein Sci. 18, 1609 (2009)

    Google Scholar 

  137. C. Higgs, T. Beuming, W. Sherman, ACS Med. Chem. Lett. 1, 160 (2010)

    Google Scholar 

  138. K. Kusano, J. Suurkuusk, I. Wadso, J. Chem. Thermodyn 5, 757 (1973)

    Google Scholar 

  139. P. Privalov, S. Gill, Pure Appl. Chem. 61, 1097 (1989)

    Google Scholar 

  140. V. Payne, N. Matubayasi, L. Murphy, R. Levy, J. Phys. Chem. B 101, 2054 (1997)

    Google Scholar 

  141. S. Gill, N. Nichols, I. Wadso, J. Chem. Thermodyn. 7, 175 (1975)

    Google Scholar 

  142. S. Gill, N. Nichols, I. Wadso, J. Chem. Thermodyn. 8, 445 (1976)

    Google Scholar 

  143. P. Gilli, L. Pretto, V. Bertolasi, G. Gilli, Acc. Chem. Res. 42, 33 (2009)

    Google Scholar 

  144. A. Ben-Naim, J. Wilf, J. Phys. Chem. 84, 583 (1980)

    Google Scholar 

  145. A. Ben-Naim, Y. Marcus, J. Chem. Phys. 81, 2016 (1984)

    ADS  Google Scholar 

  146. A.V. Plyasunov, E.L. Shock, Geochim. Cosmochim. Acta 64, 439 (2000)

    ADS  Google Scholar 

  147. W. Riebesehl, E. Tomlinson, J. Solution Chem. 15, 141 (1986)

    Google Scholar 

  148. CRC Handbook of Chemistry and Physics, 91 edn. (CRC Press, Cleveland, 2010)

  149. T.S.G. Olsson, M.A. Williams, W.R. Pitt, J.E. Ladbury, J. Mol. Biol. 384, 1002 (2008)

    Google Scholar 

  150. E.A. Meyer, R.K. Castellano, F. Diederich, Angew. Chem., Int. Ed. 42, 1210 (2003)

    Google Scholar 

  151. E. Piatnitski, R. Flowers, K. Deshayes, Chem. Eur. J. 6, 999 (2000)

    Google Scholar 

  152. M. Rekharsky, Y. Inoue, Chem. Rev. 98, 1875 (1998)

    Google Scholar 

  153. N. Shimokhina, A. Bronowska, S.W. Homans, Angew. Chem., Int. Ed. 118, 6522 (2006)

    Google Scholar 

  154. R. Malham, S. Johnstone, R.J. Bingham, E. Barratt, S.E.V Phillips, C.A. Laughton, S.W. Homans, J. Am. Chem. Soc. 127, 17061 (2005)

    Google Scholar 

  155. S.W. Homans, Drug Discovery Today 12, 534 (2007)

    Google Scholar 

  156. T.G. Oas, E.J. Toone, Adv. Biophys. Chem. 6, 1 (1997)

    Google Scholar 

  157. L. Liu, Q. Guo, Chem. Rev. 101, 673 (2001)

    Google Scholar 

  158. E. Gallichio, M. Kubo, R. Levy, J. Am. Chem. Soc. 120, 4526 (1998)

    Google Scholar 

  159. T.S.G. Olsson, J.E. Ladbury, W.R. Pitt, Protein Sci. 20, 1607 (2011)

    Google Scholar 

  160. A. Lee, S. Kinnear, A.J. Wand, Nat. Struct. Mol. Biol. 7, 72 (2000)

    Google Scholar 

  161. M.S. Marlow, J. Dogan, K.K. Frederick, K.G. Valentine, A.J. Wand, Nat. Chem. Biol. 6, 352 (2010)

    Google Scholar 

  162. B. Carrington, R. Mancera, J. Mol. Graphics Model. 23, 167 (2004)

    Google Scholar 

  163. C. Chang, W. Chen, M. Gilson, Proc. Natl. Acad. Sci. U.S.A. 104, 1534 (2007)

    ADS  Google Scholar 

  164. P.K. Agarwal, S.R. Billeter, P.T.R. Rajagopalan, S.J. Benkovic, S.J.S. Hammes-Schiffer, Proc. Natl. Acad. Sci. U.S.A. 99, 2794 (2002)

    ADS  Google Scholar 

  165. S.K. Nair, T.L. Calderone, D.W. Christianson, C.A. Fierke, J. Biol. Chem. 266, 17320 (1991)

    Google Scholar 

  166. S.Z. Fisher, A.Y. Kovalevsky, J.F. Domsic, M. Mustyakimov, R. McKenna, D.N. Silverman, P.A. Langan, Biochemistry 49, 415 (2010)

    Google Scholar 

  167. S.Z. Fisher, C.M. Maupin, M. Budayova-Spano, L. Govindasamy, C. Tu, M. Agbandje-McKenna, D.N. Silverman, G.A. Voth, R. McKenna, Biochemistry 46, 2930 (2007)

    Google Scholar 

  168. J. Mecinovic, P.W. Snyder, K.A. Mirica, S. Bai, E.T. Mack, R.L. Kwant, D.T. Moustakas, A. Heroux, G.M Whitesides, G J. Am. Chem. Soc. 133, 14017 (2011)

    Google Scholar 

  169. V.M. Krishnamurthy, V. Semetey, P.J. Bracher, N. Shen, G.M. Whitesides, J. Am. Chem. Soc. 129, 1313 (2007)

    Google Scholar 

  170. R. Talhout, J.B.F.N. Engberts, Eur. J. Biochem. 268, 1554 (2001)

    Google Scholar 

  171. R. Talhout, A. Villa, A.E. Mark, J.B.F.N. Engberts, J. Am. Chem. Soc. 125, 10570 (2003)

    Google Scholar 

  172. J. Gelp, S. Kaiko, X. Barril, J. Cirera, X. Cruz, F. Luque, M. Orozco, Proteins: Struct., Funct., Bioinformat. 45, 428 (2001)

    Google Scholar 

  173. L. Wang, B.J. Berne, R.A. Friesner, Proc. Natl. Acad. Sci. U.S.A. 108, 1326 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Whitesides.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, P.W., Lockett, M.R., Moustakas, D.T. et al. Is it the shape of the cavity, or the shape of the water in the cavity?. Eur. Phys. J. Spec. Top. 223, 853–891 (2014). https://doi.org/10.1140/epjst/e2013-01818-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01818-y

Keywords

Navigation