Skip to main content

Can the Structure of the Hydrophobic Core Determine the Complexation Site?

  • Chapter
  • First Online:
Identification of Ligand Binding Site and Protein-Protein Interaction Area

Part of the book series: Focus on Structural Biology ((FOSB,volume 8))

Abstract

Stabilization of the tertiary protein structure is most often attributed to hydrophobic interactions, although this type of interaction is not specifically reflected in protein force fields. Initial attempts to extend the analysis of traditional nonbinding interactions with factors representing hydrophobic interactions (Levitt 1976) were not particularly successful, even though the influence of the aqueous environment on molecular dynamics cannot be underestimated in respect to experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banach M, Roterman I (2009) Recognition of protein complexation based on hydrophobicity distribution. Bioinformation 4(3):98–100

    Article  PubMed  Google Scholar 

  • Banach M, Prymula K, Konieczny L, Roterman I (2011) “Fuzzy oil drop” model verified positively. Bioinformation 5(9):375–377

    Article  PubMed  Google Scholar 

  • Banach M, Prymula K, Jurkowski W, Konieczny L, Roterman I (2012) Fuzzy oil drop model to interpret the structure of antifreeze proteins and their mutants. J Mol Model 18(1):229–237

    Article  PubMed  CAS  Google Scholar 

  • Brylinski M, Konieczny L, Roterman I (2006a) Hydrophobic collapse in late-stage folding (in silico) of bovine pancreatic trypsin inhibitor. Biochimie 88(9):1229–1239

    Article  PubMed  CAS  Google Scholar 

  • Brylinski M, Konieczny L, Roterman I (2006b) Fuzzy-oil-drop hydrophobic force field–a model to represent late-stage folding (in silico) of lysozyme. J Biomol Struct Dyn 23(5):519–528

    Article  PubMed  CAS  Google Scholar 

  • Brylinski M, Konieczny L, Roterman I (2006c) Hydrophobic collapse in (in silico) protein folding. Comput Biol Chem 30(4):255–267

    Article  PubMed  CAS  Google Scholar 

  • Brylinski M, Konieczny L, Roterman I (2007a) Is the protein folding an aim-oriented process? Human haemoglobin as example. Int J Bioinform Res Appl 3(2):234–260

    Article  PubMed  CAS  Google Scholar 

  • Brylinski M, Prymula K, Jurkowski W, Kochańczyk M, Stawowczyk E, Konieczny L, Roterman I (2007b) Prediction of functional sites based on the fuzzy oil drop model. PLoS Comput Biol 3(5):e94, Epub

    Article  PubMed  Google Scholar 

  • Brylinski M, Kochanczyk M, Broniatowska E, Roterman I (2007c) Localization of ligand binding site in proteins identified in silico. J Mol Model 13(6–7):665–675

    Article  PubMed  CAS  Google Scholar 

  • Bushmarina NA, Blanchet CE, Vernier G, Forge V (2006) Cofactor effects on the protein folding reaction: acceleration of a-lactalbumin refolding by metal ions. Protein Sci 15:659–671

    Article  PubMed  CAS  Google Scholar 

  • Choi SI, Han KS, Kim CW, Ryu K-S, Kim BH et al (2008) Protein solubility and folding enhancement by interaction with RNA. PLoS One 3(7):e2677

    Article  PubMed  Google Scholar 

  • Curnow P, Booth PJ (2010) The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein. J Mol Biol 403:630–642

    Article  PubMed  CAS  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163(3871):1073–1075

    Article  PubMed  CAS  Google Scholar 

  • Dyer RB (2007) Ultrafast and downhill protein folding. Curr Opin Struct Biol 17:38–47

    Article  PubMed  CAS  Google Scholar 

  • Fisher AC, DeLisa MP (2008) Laboratory evolution of fast-folding green fluorescent protein using secretory pathway quality control. PLoS One 3(6):e2351

    Article  PubMed  Google Scholar 

  • Gouda H, Torigoe H, Saito A, Sato M, Arata Y, Shimada I (1992) Three-dimensional solution structure of the B domain of staphylococcal protein A: comparisons of the solution and crystal structures. Biochemistry 31:9665–9672

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384:285–288

    Article  PubMed  CAS  Google Scholar 

  • Jorov A, Zhorov BS, Yang DS (2004) Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Sci 13:1524–1537

    Article  PubMed  CAS  Google Scholar 

  • Kayatekin C, Zitzewitz JA, Matthews CR (2008) Zinc binding modulates the entire folding free energy surface of human Cu, Zn superoxide dismutase. J Mol Biol 384(2):540–555

    Article  PubMed  CAS  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  PubMed  CAS  Google Scholar 

  • Konieczny L, Brylinski M, Roterman I (2006) Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 6(1–2):15–22

    PubMed  CAS  Google Scholar 

  • Kopecká J, Krijt J, Raková K, Kožich V (2011) Restoring assembly and activity of cystathionine β-synthase mutants by ligands and chemical chaperones. J Inherit Metab Dis 34:39–48

    Article  PubMed  Google Scholar 

  • Levitt M (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59–107

    Article  PubMed  CAS  Google Scholar 

  • Marchewka D, Banach M, Roterman I (2011) Internal force field in proteins seen by divergence entropy. Bioinformation 6(8):300–302

    Article  PubMed  Google Scholar 

  • Minervini G, Evangelista G, Polticelli F, Piwowar M, Kochanczyk M, Flis L, Malawski M, Szepieniec T, Wiśniowski Z, Matczyńska E, Prymula K, Roterman I (2008) Never born proteins as a test case for ab initio protein structures prediction. Bioinformation 3(4):177–179

    Article  PubMed  Google Scholar 

  • Nalewajski RF (2006) Information theory of molecular systems. Elsevier, Amsterdam. ISBN 978-0-444-51966-5

    Google Scholar 

  • Ozkan SB, Dill K, Bahar I (2002) Fast-folding protein kinetics, hidden intermediates and the sequential stabilization model. Protein Sci 11:1958–1970

    Article  PubMed  CAS  Google Scholar 

  • Prymula K, Roterman I (2009) Functional characteristics of small proteins (70 amino acid residues) forming protein-nucleic acid complexes. J Biomol Struct Dyn 26(6):663–677

    Article  PubMed  CAS  Google Scholar 

  • Prymula K, Piwowar M, Kochanczyk M, Flis L, Malawski M, Szepieniec T, Evangelista G, Minervini G, Polticelli F, Wiśniowski Z, Sałapa K, Matczyńska E, Roterman I (2009) In silico structural study of random amino acid sequence proteins not present in nature. Chem Biodivers 6(12):2311–2336

    Article  PubMed  CAS  Google Scholar 

  • Prymula K, Sałapa K, Roterman I (2010) “Fuzzy oil drop” model applied to individual small proteins built of 70 amino acids. J Mol Model 16(7):1269–1282

    Article  PubMed  CAS  Google Scholar 

  • Prymula K, Jadczyk T, Roterman I (2011) Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction. J Comput Aided Mol Des 25(2):117–133

    Article  PubMed  CAS  Google Scholar 

  • Ramoni R, Vincent F, Grolli S, Conti V, Malosse C, Boyer FD, Nagnan-Le Meillour P, Spinelli S, Cambillau C, Tegoni M (2001) The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein. J Biol Chem 276:7150–7155

    Article  PubMed  CAS  Google Scholar 

  • Roterman I, Konieczny L, Jurkowski W, Prymula K, Banach M (2011) Two-intermediate model to characterize the structure of fast-folding proteins. J Theor Biol 283(1):60–70

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Bu G, Chen S, Takei Y, Hibi K, Kodera Y, McCormick LM, NakaoA NM, Muramatsu T, Kadomatsu K (2011) Premature ligand-receptor interaction during biosynthesis limits the production of growth factor midkine and its receptor LDL receptor-related protein 1. J Biol Chem 286(10):8405–8413

    Article  PubMed  CAS  Google Scholar 

  • Warren MS, Brown KA, Farnum MF, Howell EE, Kraut J (1991) Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Biochemistry 30:11092–11103

    Article  PubMed  CAS  Google Scholar 

  • Wittung-Stafshede P (2002) Role of cofactors in protein folding. Acc Chem Res 35(4):201–208

    Article  PubMed  CAS  Google Scholar 

  • Zobnina V, Roterman I (2009) Application of the fuzzy-oil-drop model to membrane protein simulation. Proteins 77(2):378–394

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Alonso DO, Maki K, Huang CY, Lahr SJ, Daggett V, Roder H, DeGrado WF, Gai F (2003) Ultrafast folding of alpha3d: a de novo designed three-helix bundle protein. Proc Natl Acad Sci USA 100:15486–15491

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Roterman-Konieczna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Banach, M., Konieczny, L., Roterman-Konieczna, I. (2013). Can the Structure of the Hydrophobic Core Determine the Complexation Site?. In: Roterman-Konieczna, I. (eds) Identification of Ligand Binding Site and Protein-Protein Interaction Area. Focus on Structural Biology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5285-6_3

Download citation

Publish with us

Policies and ethics