Skip to main content

Advertisement

Log in

Dragon-Kings in rock fracturing: Insights gained from rock fracture tests in the laboratory

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In order to shed some lights to the “dragon-kings” concept, this paper re-examines experimental results on rock fracture tests in the laboratory, obtained from acoustic emission monitoring. The fracture of intact rocks as well as rocks containing natural structures (joints, faults, foliations) under constant stress rate loading or creep conditions is generally characterized by typical stages with different underlying physics. The primary phase reflects the initial rupture of pre-existing microcrack population in the sample or in the fault zone. Sub-critical growth dominates the secondary phase. The third phases termed nucleation phase corresponds to the initiation and accelerated growth of the ultimate fracture. The secondary and nucleation phases in both intact rock and faulted rock show power-law (of time-to-failure) increasing event rate and moment release. Samples containing planar structures such as foliations and faults demonstrate very similar features to natural earthquakes including: 1) small number of immediate foreshocks by which fault nucleation zones could be mapped; 2) the critical nucleation zone size is normally a fraction of the sample dimension; 3) a lot of aftershocks concentrated on the fault ruptured during the main event; 4) stress drop due to the main rupture is of the order from a few tens to a few hundreds MPa; 5) b-value drops during foreshocks and recovers during the aftershocks. All these results agree with the suggestion that laboratory measurements require no scaling but can be applied directly to the Earth to represent local fault behavior. The ultimate failure of the sample, or fracture of major asperities on the fault surface, normally lead to extreme events, i.e., dragon-kings, which has a magnitude significantly greater than that expected by the Gutenberg-Richter power-law relation in the magnitude-frequency distribution for either foreshocks or aftershocks. There are at least two mechanisms that may lead to dragon-kings: 1) The power-law increasing event rate and moment release; and 2) Hierarchical fracturing behavior resulting from hierarchical inhomogeneities in the sample. In the 1st mechanism, the final failure corresponds to the end point of the progressive occurrence of events and thus the resulted dragon-king event can be interpreted as a superposition of many small events. While for the 2nd mechanism an event of extreme size is the result of fracture growth stepping from a lower hierarchy into a higher hierarchy on fault surface having asperities characterized by hierarchical distribution (of size or strength) rather than simple fractal distribution. In both mechanisms the underlying physics is that fracture in rocks is hard to stop beyond certain threshold corresponding to the critical nucleation zone size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Lockner, J.D. Byerlee, V. Kuksenko, A. Ponomarev, A. Sidorin, Nature 350, 39 (1991)

    Article  ADS  Google Scholar 

  2. I. Main, P.R. Sammonds, P.G. Meredith, Geophy. J. Int. 115, 367 (1993)

    Article  ADS  Google Scholar 

  3. X. Lei, K. Kusunose, M.V.M.S. Rao, O. Nishizawa, T. Satoh, J. Geophys. Res. 105, 6127 (2000)

    Article  ADS  Google Scholar 

  4. A. Zang, F.C. Wagner, S. Stanchits, C. Janssen, G. Dresen, J. Geophy. Res. 104, 23, 651 (2000)

    ADS  Google Scholar 

  5. X. Lei, K. Masuda, O. Nishizawa, L. Jouniaux, L. Liu, W. Ma, T. Satoh, K. Kusunose, J. Struct. Geol. 26, 247 (2004)

    Article  ADS  Google Scholar 

  6. X. Lei, T. Satoh, Tectonophysics 431, 97 (2007)

    Article  ADS  Google Scholar 

  7. B.D. Thompson, R.P. Young, D.A. Lockner, Geophys. Res. Lett. 32, L10304 (2005)

    Article  ADS  Google Scholar 

  8. B.D. Thompson, R.P. Young, D.A. Lockner, Pure Appl. Geophys. 163, 995 (2006)

    Article  ADS  Google Scholar 

  9. B.D. Thompson, R.P. Young, D.A. Lockner, J. Geophys. Res. 114, B02205 (2009)

    Article  ADS  Google Scholar 

  10. G. Kwiatek, K. Plenkers, M. Nakatani, Y. Yabe, G. Dresen, Bull. Seismol. Soc. Am. 100, 3, 1165 (2010)

    Article  Google Scholar 

  11. J.R. Rice, M. Cocco, Seismic fault rheology and earthquake dynamics, in Tectonic Faults: Agents of Change on a Dynamic Earth, edited by M. R. Handy, G. Hirth, N. Hovius (Dahlem Workshop 95, Berlin, January 2005 on the Dynamics of Fault Zones), chap. 5, (MIT Press, Cambridge, Mass, 2007), p. 99

  12. B. Gutenberg, C.F. Richter, Seismicity of the earth, (Princeton Univ. Press, Princeton, N.J., 1954)

  13. C.H. Scholz, Bull. Seism. Soc. Am. 58, 399 (1968)

    Google Scholar 

  14. F. Liakopoulou-Morris, I.G. Main, B.R. Crawford, Geophys. J. Int. 119, 219 (1994)

    Article  ADS  Google Scholar 

  15. X. Lei, Earth Plan. Sci. Lett. 213, 345 (2003)

    Article  ADS  Google Scholar 

  16. Y.Y. Kagan, D.D. Jackson, Geophys. J. Int. 104, 117 (1991)

    Article  ADS  Google Scholar 

  17. T. Yamashita, L. Knopoff, Geophys. J. 96, 389 (1989)

    Article  ADS  Google Scholar 

  18. A. Sornette, D. Sornette, Tectonophysics. 179, 327 (1990)

    Article  ADS  Google Scholar 

  19. G. Ouillon, D. Sornette, Geophys. J. Int. 143, 454 (2000)

    Article  ADS  Google Scholar 

  20. A. Moura, X. Lei, O. Nishisawa, J. Mech. Phys. Solids 54, 2544 (2006)

    Article  ADS  MATH  Google Scholar 

  21. A. Moura, X. Lei, O. Nishisawa, J. Mech. Phys. Solids 53, 2435 (2005)

    Article  ADS  MATH  Google Scholar 

  22. J.C. Anifrani, C. Le Floch, D. Sornette, B. Souillard, J. Phys. I (France) 5, 631 (1995)

    Article  Google Scholar 

  23. D. Sornette, Phys. Rep. 29, 239 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  24. V.I. Yukalov, A. Moura, H. Nechad, J. Mech. Phys. Solids 52, 453 (2004)

    Article  ADS  MATH  Google Scholar 

  25. A. Bruce, D. Wallace, Critical point phenomena: universal physics at large length scales, edited by P. Davis, The New Physics (Cambridge Univ. Press, New York, 989), p. 236

  26. G. Zöller, S. Hainzl, J. Kurths, J. Geophys. Res. 106, 2167 (2001)

    Article  ADS  Google Scholar 

  27. C.G. Bufe, D.G. Varnes, J. Geophys. Res. 98, 9871 (1993)

    Article  ADS  Google Scholar 

  28. C.G. Bufe, S.P. Nishenko, D.J. Varnes, Pure Appl. Geophys. 142, 83 (1994)

    Article  ADS  Google Scholar 

  29. D.D. Bowman, G. Quillon, C.G. Sammis, A. Sornette, D. Sornette, J. Geophys. Res. 103, B10, 24359 (1998)

    ADS  Google Scholar 

  30. S.C. Jaume, L.R. Sykes, Pure Appl. Geophys. 155, 279 (1999)

    Article  ADS  Google Scholar 

  31. Y.S. Tyupkina, R. Di Giovambattista, Earth Planet. Sci. Lett. 230, 85 (2005)

    Article  ADS  Google Scholar 

  32. X. Lei, in Fractal Analysis for Natural Hazards, edited by G. Cello, B.D. Malamud, vol. 261 (Geological Society, London, Special Publications, 2006), p. 11

  33. X. Lei, K. Kusunose, T. Satoh, O. Nishizawa, Phys. Earth Planet. Inter. 137, 213 (2003)

    Article  ADS  Google Scholar 

  34. A. McGarr, J.B. Fletcher, Bull. Seismol. Soc. Am. 93, 2355 (2003)

    Article  Google Scholar 

  35. J.D. Eshelby, Proc. Royal Soc. London, Ser. A 241, 1226, 376 (1957)

    Article  MathSciNet  Google Scholar 

  36. J.B. Walsh, J. Geophys. Res. 76, 8597 (1971)

    Article  ADS  Google Scholar 

  37. T.C. Hanks, H. Kanamori, J. Geophys. Res. 84, 2348 (1979)

    Article  ADS  Google Scholar 

  38. D.J. Dowrick, D.A. Rhoades, Bull. Seismol. Soc. Am. 94, 776 (2004)

    Article  Google Scholar 

  39. E. Villaescusa, X. Lei, O. Nishizawa, T. Funatsu, Austr. Mining Technol. Conf. 1-14, 27 (2009)

    Google Scholar 

  40. X. Lei, K. Kusunose, O. Nishizawa, A. Cho, T. Satoh, Geophys. Res. Lett. 27, 1997 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, X. Dragon-Kings in rock fracturing: Insights gained from rock fracture tests in the laboratory. Eur. Phys. J. Spec. Top. 205, 217–230 (2012). https://doi.org/10.1140/epjst/e2012-01572-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01572-8

Keywords

Navigation