Skip to main content
Log in

Theoretical methods for the calculation of Bragg curves and 3D distributions of proton beams

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The well-known Bragg-Kleeman rule R CSDA = AE has become a pioneer work in radiation physics of charged particles and is still a useful tool to estimate the range R CSDA of approximately monoenergetic protons with initial energy E 0 in a homogeneous medium. The rule is based on the continuous-slowing-down-approximation (CSDA). It results from a generalized (nonrelativistic) Langevin equation and a modification of the phenomenological friction term. The complete integration of this equation provides information about the residual energy E(z) and dE(z)/dz at each position z(0 ≦ zR CSDA). A relativistic extension of the generalized Langevin equation yields the formula R CSDA = A ⋅ (E 0 + E/2Mc 2)p. The initial energy of therapeutic protons satisfies E 0 ≪ 2Mc 2(Mc 2 = 938.276 MeV), which enables us to consider the relativistic contributions as correction terms. Besides this phenomenological starting-point, a complete integration of the Bethe-Bloch equation (BBE) is developed, which also provides the determination of R CSDA, E(z) and dE(z)/dz and uses only those parameters given by the BBE itself (i.e., without further empirical parameters like modification of friction). The results obtained in the context of the aforementioned methods are compared with Monte-Carlo calculations (GEANT4); this Monte-Carlo code is also used with regard to further topics such as lateral scatter, nuclear interactions, and buildup effects. In the framework of the CSDA, the energy transfer from protons to environmental atomic electrons does not account for local fluctuations. Based on statistical quantum mechanics, an analysis of the Gaussian convolution and the Landau-Vavilov distribution function is carried out to describe these fluctuations. The Landau tail is derived as Hermite polynomial corrections of a Gaussian convolution. It is experimentally confirmed that proton Bragg curves with E 0 ≧ 120 MeV show a buildup, which increases with the proton energy. This buildup is explained by a theoretical analysis of impinging proton beamlets. In order to obtain a complete dose calculation model for proton treatment planning, some further aspects have to be accounted for: the decrease of the fluence of the primary protons due to nuclear interactions, the transport of released secondary protons, the dose contribution of heavy recoil nuclei, the inclusion of lateral scatter of the primary and secondary protons based on Molière’s multiple-scatter theory, and the scatter contributions of collimators. This study also presents some results which go beyond proton dose calculation models; namely, the application of the relativistic generalization of the Bragg-Kleeman rule to electrons and, in an appendix, a method to determine inelastic cross-sections of therapeutic protons in media of therapeutic interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, Mathematical Tables Natural Bureau of Standards, 1970

  2. J.C. Ashley, R.H. Ritchie, W. Brandt, Document No. 021195, (National Auxilliary Service, New York, 1974)

  3. M.J. Berger, J.S Coursey, M.A. Zucker, ESTAR, PSTAR, ASTAR: Computer Programs for calculating Stopping-Power and Range Tables for Electrons, Protons and α-particles (version 1.2.2) National Institute of Standards and Technology, Gaithersburg, MD, 2000

  4. M.J. Berger, Proton Monte Carlo transport program PTRAN National Institute of Standards, Technology, Report NISTIR-5113, 1993

  5. H.A. Bethe, Ann. Physik 5, 325 (1930)

    Article  ADS  Google Scholar 

  6. H.A. Bethe, Phys. Rev. 89, 1256 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. F. Bloch, Ann. Physik 16, 285 (1933)

    Article  MATH  ADS  Google Scholar 

  8. S.N. Boon, Ph.D thesis Rijks University Groningen, 1998

  9. T. Bortfeld, Med. Phys. 24, 2024 (1997)

    Article  Google Scholar 

  10. G. Ciangaru, J. Polf, M. Bues, A. Smith, Med. Phys. 32, 3511 (2005)

    Article  Google Scholar 

  11. M.B. Chadwick, P.G. Young, Los Alamos National Laboratory Report LAUR-96-1649, 1996

  12. J.O. Deasy, Med. Phys. 25, 476 (1998)

    Article  Google Scholar 

  13. J.P. Elliott, The Nuclear Shell Theory and its relation with other models, (Wien, International Atomic Energy Agency, 1963)

  14. R.D. Evans, Atomic Nucleus, (Robert E. Krieger, Malabar, FL, 1982) (1962)

  15. L. Eyges, Phys. Rev. 74, 1434 (1948)

    ADS  Google Scholar 

  16. R.P. Feynman, Quantum electrodynamics - Lecture Notes and Reprints, (Benjamin, New York, 1962)

  17. R.P. Feynman, A.R. Hibbs, Quantum mechanics and path integrals, (Mac Graw Hill, New York, 1965)

  18. R.P. Feynman, Photon-Hadron-Interaction, (Benjamin, New York, 1972)

  19. M. Fippel, M. Soukup, Med. Phys. 31, 2263 (2004)

    Article  Google Scholar 

  20. S.Z. Flügge, Naturforschung 3a, 97 (1948)

    ADS  Google Scholar 

  21. GEANT4 Documents 2005; available from the internet address: http://geant4.web.cern/geant4/G4UsersDocuments/Overview/html/

  22. B. Gottschalk, A.M. Koehler, R.J. Schneider, J.M. Sisterson, M.S. Wagner, Nucl. Instr. Meth. 74, 467 (1993)

    Article  Google Scholar 

  23. B. Gottschalk, R. Platais, H. Platais, Med. Phys. 26, 2597 (1999)

    Article  Google Scholar 

  24. W. Heisenberg, Z. Physik 96, 473 (1935)

    Article  MATH  ADS  Google Scholar 

  25. V.L. Highland, Nucl. Instr. Meth. 129, 497 (1975)

    Article  Google Scholar 

  26. M. Hollmark, J. Uhrdin, D. Belkic, I. Gudowska, A. Brahme, Phys. Med. Biol. 49, 3247 (2004)

    Article  Google Scholar 

  27. L. Hong, M. Goitein, M. Bucciolini, R. Comiskey, B. Gottschalk, S. Rosenthal, C. Serago, M. Urie, Phys. Med. Biol. 41, 1305 (1996)

    Article  Google Scholar 

  28. ICRU, Stopping powers, ranges for protons and α-particles ICRU Report 49 (Bethesda, MD, 1993)

  29. J.F. Janni, Atom. Data Nucl. Data Tables 27, 147 (1982)

    Article  ADS  Google Scholar 

  30. H. Jiang, H. Paganetti, Med. Phys. 31, 2811 (2004)

    Article  Google Scholar 

  31. E. Matsinos, available from the internet address: http://arxiv.org/abs/0811.1076 (2008)

  32. T. Matsuura, S. Saitoh, Appl. Anal. 85, 901 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Medin, P. Andreo, Phys. Med. Biol. 42, 89 (1997)

    Article  Google Scholar 

  34. M. Meyer-Goeppert, J. Jensen, Nuclear Shell Theory, (Wiley, New York, 1970)

  35. R.G. Milner, Nucl. Phys. A588, 599C (1990)

    ADS  Google Scholar 

  36. G. Molière, Z. Naturforschung 10a, 177 (1955)

    ADS  Google Scholar 

  37. K. O’Brien, The physics of radiation transport Computer Techniques in Radiation Transport and Dosimetry, edited by W.R. Nelson and T.M. Jenkins (Plenum Press, New York and London, 1979)

  38. H. Paganetti, Phys. Med. Biol. 47, 747 (2002)

    Article  Google Scholar 

  39. P. Pedroni, S. Scheib, T. Böhringer, A. Coray, M. Grossmann, S. Lin, A. Lomax, Phys. Med. Biol. 50, 541 (2005)

    Article  Google Scholar 

  40. P. Petti, Int. J. Rad. Oncol. Biol. Phys. 35, 1049 (1996)

    Article  Google Scholar 

  41. M.R. Rahu, Heavy Particle Radiotherapy, (Academic Press, New York, 1980)

  42. K.R. Russel, U. Isacson, M. Saxner, A. Ahnesjö, A. Montelius, E. Grusell, C. Dahlgren, S. Lorin, B. Glimelius, Phys. Med. Biol. 45, 9 (2000)

    Article  Google Scholar 

  43. S. Saitoh, Commun. Korean Math. Society 371 (2001)

  44. G. Sandison, C. Lee, X. Lu, L. Papiez, Med. Phys. 24, 841 (1997)

    Article  Google Scholar 

  45. B. Schaffner, E. Pedroni, A. Lomax, Phys. Med. Biol. 44, 27 (1999)

    Article  Google Scholar 

  46. B. Schaffner, Phys. Med. Biol. 53, 1545 (2008)

    Article  Google Scholar 

  47. U. Schneider, E. Pedroni, A. Lomax, Phys. Med. Biol. 41, 111 (1996)

    Article  Google Scholar 

  48. E. Segrè, Nuclei and Particles, (Benjamin, New York, 1964)

  49. H. Szymanowski, U. Oelfke, Phys. Med. Biol. 47, 3313 (2002)

    Article  Google Scholar 

  50. A. Tourovsky, A. Lomax, U. Schneider, E. Pedroni, Phys. Med. Biol. 50, 971 (2005)

    Article  Google Scholar 

  51. W. Ulmer, Inv. Probl. 26, 085002 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  52. W. Ulmer, Rad. Phys. Chem. 76, 1089 (2007)

    Article  ADS  Google Scholar 

  53. W. Ulmer, W. Kaissl, Phys. Med. Biol. 48, 707 (2003)

    Article  Google Scholar 

  54. W. Ulmer, J. Pyyry, W. Kaissl, Phys. Med. Biol. 50, 1767 (2005)

    Article  Google Scholar 

  55. W. Ulmer, B. Schaffner, IFMBE Proceedings 2125, (Springer Publishing, Berlin – Heidelberg – New York, 2006)

  56. W. Ulmer, Theor. Chim. Acta 55, 179 (1980)

    Article  Google Scholar 

  57. W. Ulmer, Nuovo Cimento 51A, 309 (1979)

    ADS  Google Scholar 

  58. W. Ulmer, H. Hartmann, Nuovo Cimento 47A, 59 (1978)

    MathSciNet  ADS  Google Scholar 

  59. W. Ulmer, H. Hartmann, Nuovo Cimento 47A, 359 (1978)

    MathSciNet  ADS  Google Scholar 

  60. C.D. Zerby, W.E. Kinney, Nucl. Instr. Meth. 36, 125 (1965)

    Article  Google Scholar 

  61. R. Zhang, D. Newhauser, Phys. Med. Biol. 54, 1383 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ulmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulmer, W., Matsinos, E. Theoretical methods for the calculation of Bragg curves and 3D distributions of proton beams. Eur. Phys. J. Spec. Top. 190, 1–81 (2010). https://doi.org/10.1140/epjst/e2010-01335-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01335-7

Keywords

Navigation