Skip to main content
Log in

On the representation of atoms and molecules as self-interacting field with internal structure

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The nonlinear Schrödinger equation with Gaussian convolution kernel K2 induces the group SU3 with reference to the classification of the multiplet structure of the eigenstates. Such a field can be used to describe some atoms (where the outermost electrons are related tos-orbitals) as a self-interacting, extended particle with an internal structure. In the case of those atoms, where the valence electrons are described byp-orbitals, and almost all molecules the Gaussian kernel K2 has to be generalized by Hermite polynomials. By that, we can formulate a nonlinear field theory, establishing the spatial symmetry of a system via basis structure functions. Thus the symmetry represents the most essential starting-point for treating molecules as quasi-particles with an internal structure. It will be shown that there is some connection with the concept of chirality functions and the Ginzburg — Landau theory of super-conductivity. The latter theory indicates that we can consider the nonlinear Schrödinger equation and its generalizations as a classical field theory being associated with phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakharov, V., Shabat, A.: Sov. Phys. JETP,64, 1627 (1973)

    Google Scholar 

  2. Satsuma, J., Yajima, N.: Prog. Theor. Phys.55S, 285 (1974)

    Google Scholar 

  3. Kubo, S., Namiki, M., Ohba, I.: Prog. Theor. Phys.55, 860 (1976)

    Google Scholar 

  4. Jackiw, R.: Rev. Mod. Phys.49, 681 (1977)

    Google Scholar 

  5. Gupta, M. R.: Phys. Lett.72A, 6, 420 (1979)

    Google Scholar 

  6. Nonlinear Problems. Lecture Notes in Physics98, Heidelberg: Springer Press: 1979

  7. Ulmer, W., Hartmann, H.: Nuovo Cimento47A, 359 (1978)

    Google Scholar 

  8. Ulmer, W.: Nuovo Cimento51A, 309 (1979)

    Google Scholar 

  9. Yamamoto, H.: Prog. Theor. Phys.58, 1014 (1977)

    Google Scholar 

  10. Ruch, E., Schönhofer, A.: Theoret. Chim. Acta (Berl.)10, 91 (1968)

    Google Scholar 

  11. Ruch, E.: Angew. Chem. Int. Ed.16, 65 (1977)

    Google Scholar 

  12. Hund, F.: Materie als Feld. Heidelberg: Springer Press 1954

    Google Scholar 

  13. Mielnik, B.: Com. Math. Phys.37, 221 (1974)

    Google Scholar 

  14. Hartmann, H., Stürmer, W.: Z. Naturforsch.5a, 99 (1950)

    Google Scholar 

  15. Huber, W., Simon, G., Kuhn, H.: Z.Naturforsch.17a, 99 (1962); Seelig, F., Huber, W., Kuhn, H.: Z. Naturforsch.17a, 114 (1962)

    Google Scholar 

  16. Meixner, J.: J. Math. Phys.4, 154 (1963)

    Google Scholar 

  17. Kohler, M.: Int. Journ. Theor. Phys.13, 38 (1975)

    Google Scholar 

  18. Roman, P.: Int. Journ. Theor. Phys.16, 12, 915 (1977)

    Google Scholar 

  19. Faiman, D., Hendry, A. W.: Phys. Rev.173, 1720 (1968)

    Google Scholar 

  20. Landolt-Börnstein: Atom- und Molekularphysik. Heidelberg: Springer Press 1950

    Google Scholar 

  21. Lakshmanan, N., Prabhakaran, J.: Lett. Nuovo Cimento7, 689 (1973)

    Google Scholar 

  22. Bender, C. M.: Phys. Rev.,D7, 1620 (1973)

    Google Scholar 

  23. Shustov, A. P.: J. Phys. A,11, 1171 (1978)

    Google Scholar 

  24. Halpern, F. R.: J. Math. Phys.14, 219 (1973)

    Google Scholar 

  25. Mizrahi, M. M.: J. Math. Phys.20, 844 (1979)

    Google Scholar 

  26. Hartmann, H., Ilse, F.: Z. Naturforsch.6a, 751 (1951)

    Google Scholar 

  27. Schläfer, H. L., Gliemann, G.: Einführung in die Ligandenfeldtheorie. Frankfurt am Main: Akademische Verlagsgesellschaft 1967

    Google Scholar 

  28. Landau, L. D., Ginzburg, V. L.: Sov. Phys. JETP,20, 1064 (1950)

    Google Scholar 

  29. Graham, R., Haken, H.: Z. Physik,237, 31 (1970)

    Google Scholar 

  30. Feynman, R. P.: Les Houches Lectures in Theoretical Physics, p. 163 1976

  31. Heisenberg, W.: Z. Physik,96, 473 (1935)

    Google Scholar 

  32. Elliott, J. P.: The Nuclear Shell Model and its Relation with Other Models. Wien: International Atomic Energy Agency 1963

    Google Scholar 

  33. Meyer, M. G., Jensen, J. H. D.: Elementary Nuclear Shell Theory. New York: Wiley 1955

    Google Scholar 

  34. Barut, A. O., Raczka, R.: Nuovo Cimento,31B, 19 (1976)

    Google Scholar 

  35. Ivanenko, D. D.: In: Centenario Einsteiniano. Firenze: 1979

  36. Feynman, R. P.: Photon-Hadron-Interaction. New York, N.Y.: 1972

  37. Ulmer, W.: Z. Naturforsch.34c, 658 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulmer, W. On the representation of atoms and molecules as self-interacting field with internal structure. Theoret. Chim. Acta 55, 179–205 (1980). https://doi.org/10.1007/BF00556156

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00556156

Key words

Navigation