Skip to main content
Log in

Ab initio simulation of interface reactions as a foundation of understanding polymorphism

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Chemical reactions at solid/liquid or solid/gas hybrid interfaces govern the morphogenesis of growing solid state phases. In order to understand the polymorphism of solids, the understanding of the mechanisms and kinetics of these reactions is of crucial importance, as is an insight into the morphology of said surfaces on an atomistic scale. Ab initio simulations are a valuable tool to obtain these data, especially in materials design, where many possible materials for an application may have to be examined. In such cases the fabrication of all these materials for examination and characterization can be extremely time consuming and expensive. We present methods to determine surface properties and reaction energetics from ab initio simulations and demonstrate their potential using three examples: reaction energetics for the adsorption of adhesive component molecules on alumina surfaces, the functionalization of a silica surface with a fluorocarbon layer and the investigation of the wetting behavior of the functionalized surface, and the calculation of reaction energetics for a proton transfer process in the bacterial reaction centre of photosynthesis, including quantum mechanical effects as well as solvent and continuum electrostatic influences from the surrounding medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Jensen, Introduction to Computational Chemistry (John Wiley & Sons, New York, 1999)

  • A. Szabo, S. Ostlund, Modern Quantum Chemistry (Dover Publications Inc., Mineola, New York, 1989)

  • R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    Google Scholar 

  • T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, Phys. Stat. Sol. B 217, 41 (2000)

    Google Scholar 

  • G. Seifert, H. Eschrig, W. Bieger, Z. Phys. Chem. 267, 529 (1986)

    Google Scholar 

  • J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Google Scholar 

  • M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998)

    Google Scholar 

  • J.J.P. Stewart, J. Comput. Chem. 10, 209 (1989)

    Google Scholar 

  • M.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Steward, J. Am. Chem. Soc. 107, 3902 (1985)

    Google Scholar 

  • A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)

    Google Scholar 

  • M.J. Field, P.A. Bash, M. Karplus, J. Comput. Chem. 11, 700 (1990)

    Google Scholar 

  • J. Aaqvist, A. Warshel, Chem. Rev. 93, 2523 (1993)

    Google Scholar 

  • J. Gao, Acc. Chem. Res. 29, 298 (1996)

    Google Scholar 

  • S. Humbel, S. Sieber, K. Morokuma, J. Chem. Phys. 105, 1959 (1996)

  • M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 100, 19357 (1996)

    Google Scholar 

  • P. König, M. Hoffmann, T. Frauenheim, Q. Cui, J. Phys. Chem. B 109, 9082 (2005)

    Google Scholar 

  • D. Riccardi, P. Schaefer, Y. Yang, H. Yu, N. Ghosh, X. Prat-Resina, P. König, G. Li, D. Xu, H. Guo et al., J. Phys. Chem. B 110, 6458 (2006)

  • D. Das, K. Eurenius, E. Billings, P. Sherwood, D. Chatfield, M. Hodoscek, B. Brooks, J. Chem. Phys. 117, 10534 (2002)

    Google Scholar 

  • J.W. Ponder, D.A. Case, Adv. Prot. Chem. 66, 27 (2003)

    Google Scholar 

  • C.R.A. Catlow, M. Dixon, W.C. Mackrodt, in Computer Simulations in Solids, Lect. Notes Phys., Vol. 166 (Springer-Verlag, Berlin, 1982), p. 130

  • J. Gao, D.G. Truhlar, Annu. Rev. Phys. Chem. 53, 467 (2002)

    Google Scholar 

  • A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425 (2002)

    Google Scholar 

  • Q. Cui, M. Karplus, Adv. Prot. Chem. 66, 315 (2003)

    Google Scholar 

  • C. Lennartz, A. Schaefer, F. Terstegen, W. Thiel, J. Phys. Chem. B 106, 1758 (2002)

    Google Scholar 

  • V. Guallar, R.A. Friesner, J. Am. Chem. Soc. 126, 8501 (2004)

    Google Scholar 

  • G.A. Cisneros, H.Y. Liu, Y.K. Zhang, W.T. Yang, J. Am. Chem. Soc. 125, 10384 (2003)

    Google Scholar 

  • T. Woo, P. Margl, L. Deng, L. Cavallo, T. Ziegler, Catal. Today 50, 479 (1999)

  • A. Maiti, M. Sierka, J. Andzelm, J. Golab, J. Sauer, J. Phys. Chem. A 104, 10932 (2000)

    Google Scholar 

  • C. Choi, M. Gordon, J. Am. Chem. Soc. 121, 11311 (1999)

  • P. Sinclair, A. de Vries, P. Sherwood, C. Catlow, R. van Santen, J. Chem. Soc. Faraday Trans. 94, 3401 (1998)

    Google Scholar 

  • P. Sherwood, A.H. de Vries, M.F. Guest, G. Schreckenbach, C.R.A. Catlow, S.A. French, A.A. Sokol, S.T. Bromley, W. Thiel, A.J. Turner et al., J. Mol. Struct. (Theochem) 632, 1 (2003)

    Google Scholar 

  • I. Hillier, J. Mol. Struct. (Theochem) 463, 45 (1999)

    Google Scholar 

  • J. Sauer, M. Sierka, J. Comput. Chem. 21, 1470 (2000)

    Google Scholar 

  • J. Noell, K. Morokuma, J. Phys. Chem. 80, 2675 (1976)

    Google Scholar 

  • N. Lopez, G. Pacchioni, F. Maseras, F. Illas, Chem. Phys. 294, 611 (1998)

    Google Scholar 

  • D. Riccardi, G. Li, Q. Cui, J. Phys. Chem. B 108, 6467 (2004)

    Google Scholar 

  • M. Garcia-Viloca, D.G. Truhlar, J. Gao, J. Mol. Biol. 327, 549 (2003)

    Google Scholar 

  • A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425 (2003)

    Google Scholar 

  • Y. Zhang, T. Lee, W. Yang, J. Chem. Phys. B 110, 46 (1999)

    Google Scholar 

  • J. Sauer, Chem. Rev. 89, 199 (1989)

    Google Scholar 

  • I. Antes, W. Thiel, J. Phys. Chem. A 103, 9290 (1999)

    Google Scholar 

  • G.G. Ferenczy, J.L. Rivail, P.R. Surjan, G. Naray-Szabo, J. Comput. Chem. 13, 830 (1992)

    Google Scholar 

  • V. Thery, D. Rinaldi, J.L. Rivail, B. Maigret, G.G. Ferenczy, J. Comput. Chem. 15, 269 (1994)

    Google Scholar 

  • D.M. Philipp, R.A. Friesner, J. Comput. Chem. 20, 1468 (1999)

    Google Scholar 

  • R.B. Murphy, D.M. Philipp, R.A. Friesner, J. Comput. Chem. 21, 1442 (2000)

    Google Scholar 

  • J. Gao, P. Amara, C. Alhambra, M.J. Field, J. Phys. Chem. A 102, 4714 (1998)

    Google Scholar 

  • J. Pu, J. Gao, D.G. Truhlar, J. Phys. Chem. A 108, 5454 (2004)

    Google Scholar 

  • Q. Cui, M. Elstner, E. Kaxiras, T. Frauenheim, M. Karplus, J. Phys. Chem. B 105, 569 (2001)

    Google Scholar 

  • G. Henkelman, G. Jóhannesson, H. Jónsson, Theoretical Methods in Condensed Phase Chemistry and Physics, in Progress in Theoretical Chemistry and Physics, Vol. 5 (Kluwer Academic Publishers, Dordrecht, 2002), pp. 269–300

  • B.R. Gelin, M. Karplus, Proc. Natl. Acad. Sci. 72, 2002 (1975)

  • M.J.S. Dewar, E.F. Healy, J.J.P. Stewart, J. Chem. Soc. Faraday Trans. II 80, 227 (1984)

    Google Scholar 

  • I.V. Ionova, E.A. Carter, J. Chem. Phys. 98, 6377 (1993)

    Google Scholar 

  • G. Henkelman, H. Jónsson, J. Chem. Phys. 111, 7010 (1999)

    Google Scholar 

  • S. Fischer, M. Karplus, Chem. Phys. Lett. 194, 252 (1992)

    Google Scholar 

  • J. Baker, J. Comput. Chem. 7, 385 (1986)

    Google Scholar 

  • C.J. Cerjan, W.H. Miller, J. Chem. Phys. 75, 2800 (1981)

    Google Scholar 

  • D.T. Nguyen, D.A. Case, J. Phys. Chem. 89, 4020 (1985)

    Google Scholar 

  • W. Quapp, Chem. Phys. Lett. 253, 286 (1996)

    Google Scholar 

  • H. Taylor, J. Simmons, J. Phys. Chem. 89, 684 (1985)

    Google Scholar 

  • D. Wales, J. Chem. Phys. 91, 7002 (1989)

    Google Scholar 

  • H. Jónsson, G. Mills, K.W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, Singapore, 1998), p. 387

  • G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)

    Google Scholar 

  • P. Maragakis, S.A. Adreev, Y. Brumer, D.R. Reichmann, E. Kaxiras, J. Chem. Phys. 117, 4651 (2002)

    Google Scholar 

  • G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)

    Google Scholar 

  • G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977)

    Google Scholar 

  • C. Bartels, M. Karplus, J. Comput. Chem. 18, 1450 (1997)

    Google Scholar 

  • E. Darve, A. Pohorille, J. Chem. Phys. 115, 9169 (2001)

    Google Scholar 

  • D.J. Tobias, C.L. Brooks III, J. Chem. Phys. 89, 5115 (1988)

  • B. Roux, M. Karplus, Biophys. J. 59, 961 (1991)

    Google Scholar 

  • E.A. Cartera, G. Ciccotti, J.T. Hynesa, R. Kapralb, Chem. Phys. Lett. 156, 472 (1989)

    Google Scholar 

  • A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. (USA) 99, 12562 (2002)

    Google Scholar 

  • N.K. Banavali, B. Roux, J. Am. Chem. Soc. 127, 6866 (2005)

    Google Scholar 

  • J.K. Hwang, A. Warshel, J. Am. Chem. Soc. 118, 11745 (1996)

    Google Scholar 

  • Y.R. Mo, J. Gao, J. Comput. Chem. 21, 1458 (2000)

    Google Scholar 

  • J. Kästner, W. Thiel, J. Chem. Phys. 124, 234106 (2006)

    Google Scholar 

  • P.H. König, Q. Cui (submitted)

  • Z. Kurtovic, M. Marchi, D. Chandler, Mol. Phys. 78, 1155 (1993)

    Google Scholar 

  • M. Gao, D. Craig, V. Vogel, K. Schulten, J. Mol. Biol. 323, 939 (2002)

    Google Scholar 

  • K. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637 (2004)

    Google Scholar 

  • A. Fersht, Structure and Mechanism in Protein Science: Guide to Enzyme Catalysis and Protein Folding (W.H. Freeman, New York, 1999)

  • R.A.W. Frank, C.M. Titman, J.V. Pratap, B.F. Luisi, R.N. Perham, Science 306, 872 (2004)

    Google Scholar 

  • M. Elstner, T. Frauenheim, S. Suhai, J. Mol. Struct.: Theochem 632, 29 (2003)

    Google Scholar 

  • D. Riccardi, P. König, X. Prat-Resina, H. Yu, M. Elstner, T. Frauenheim, Q. Cui, J. Am. Chem. Soc. 128, 16302 (2006)

    Google Scholar 

  • A. Bondar, M. Elstner, S. Suhai, J.C. Smith, S. Fischer, Structure 12, 1281 (2004)

  • Q. Cui, M. Elstner, M. Karplus, J. Phys. Chem. B 106, 2721 (2002)

    Google Scholar 

  • Q. Cui, M. Karplus, Adv. Prot. Chem. 66, 315 (2003)

    Google Scholar 

  • R. Pomès, B. Roux, Biophys. J. 75, 33 (1998)

    Google Scholar 

  • R. Pomès, B. Roux, Biophys. J. 71, 19 (1996)

    Google Scholar 

  • M.F. Schumaker, R. Pomès, B. Roux, Biophys. J. 79, 2840 (2000)

    Google Scholar 

  • R. Pomès, B. Roux, Biophys. J. 82, 2304 (2002)

    Google Scholar 

  • N. Chakrabarti, E. Tajkhorshid, B. Roux, R. Pomès, Structure 12, 65 (2004)

    Google Scholar 

  • A. Burykin, A. Warshel, Biophys. J. 85, 3696 (2003)

    Google Scholar 

  • N. Chakrabarti, B. Roux, R. Pomès, J. Mol. Biol. 343, 493 (2004)

    Google Scholar 

  • Y. Wu, G.A. Voth, Biophys. J. 85, 864 (2003)

    Google Scholar 

  • P.H. König, N. Ghosh, M. Hoffmann, M. Elstner, E. Tajkhorshid, T. Frauenheim, Q. Cui, J. Phys. Chem. A 110, 548 (2006)

    Google Scholar 

  • M. Hoffmann, P.H. König et al. (in preparation)

  • A. Glazer, Ann. Rev. Plant Physiol. 38, 11 (1987)

    Google Scholar 

  • H. Komiya, T.O. Yeates, D.C. Rees, J.P. Allen, G. Feher, Proc. Natl. Acad. Sci. (USA) 85, 9012 (1988)

    Google Scholar 

  • P. Sebban, P. Maroti, D.K. Hanson, Biochimie 77, 677 (1995)

  • M.Y. Okamura, M.L. Paddock, M.S. Graige, G. Feher, Biochim. Biophys. Acta 1458, 148 (2000)

    Google Scholar 

  • A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha et al., J. Phys. Chem. B 102, 3586 (1998)

    Google Scholar 

  • C.L. Brooks, M. Karplus, J. Mol. Biol. 208, 159 (1989)

    Google Scholar 

  • W. Im, S. Berneche, B. Roux, J. Chem. Phys. 114, 2924 (2001)

    Google Scholar 

  • P. Schaefer, D. Riccardi, Q. Cui, J. Chem. Phys. 123, 014905 (2005)

    Google Scholar 

  • A. Remy, K. Gerwert, Nat. Struct. Biol. 10, 637 (2003)

    Google Scholar 

  • P. Sebban, P. Maróti, M. Schiffer, D.K. Hanson, Biochemistry 34, 8390 (1995)

  • J.M. Knaup, C. Köhler, T. Frauenheim, A.T. Blumenau, M. Amkreutz, P. Schiffels, B. Schneider, O.D. Hennemann, J. Phys. Chem. B 110, 20460 (2006)

    Google Scholar 

  • T. Krüger, M. Elstner, P. Schiffels, T. Frauenheim, J. Chem. Phys. 122, 114110 (2005)

    Google Scholar 

  • J. Barz, A. Haupt, U. Vohrer, H. Hilgers, C. Oehr, Surf. Coat. Technol. 200, 453 (2005)

    Google Scholar 

  • C. Köhler, T. Frauenheim, Surf. Sci. 600, 453 (2006)

    Google Scholar 

  • C. Köhler, Z. Hajnal, P. Deák, T. Frauenheim, S. Suhai, Phys. Rev. B 64, 085333 (2001)

    Google Scholar 

  • C. Biloiu, I.A. Biloiu, Y. Sakai, Y. Suda, A. Ohta, J. Vac. Sci. Tech. A 22, 13 (2004)

    Google Scholar 

  • A. Vanhulsel, A. Dekempeneer, J. Smeets, J.P. Celis, J. Vac. Sci. Tech. A 17, 2378 (1999)

    Google Scholar 

  • S.L. Mayo, B.D. Olafson, W.A. Goddard III, J. Phys. Chem. 94, 8897 (1990)

    Google Scholar 

  • M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 103, 4508 (1999)

    Google Scholar 

  • D.L. Schmidt, C.E. Coburn, B.M. DeKoven, G.E. Potter, G.F. Meyers, D.A. Fischer, Nature 368, 39 (1994)

    Google Scholar 

  • Z. Guo, F. Zhou, J. Hao, W. Liu, J. Am. Chem. Soc. 127, 15670 (2005)

    Google Scholar 

  • Y.L. Chen, C.A. Helm, J.N. Israelachvili, J. Phys. Chem. 95, 10736 (1991)

    Google Scholar 

  • P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Google Scholar 

  • R. Sedev, M. Fabretto, J. Ralston, J. Adhesion 80, 497 (2004)

    Google Scholar 

  • M.J.P. Nijmeijer, C. Bruin, A.F. Bakker, J.M.J. van Leeuwen, Phys. Rev. A 42, 6052 (1990)

    Google Scholar 

  • H. Yoshizawa, Y.L. Chen, J.N. Israelachvili, J. Phys. Chem. 97, 4128 (1993)

    Google Scholar 

  • C.F. Fan, T. Cagin, J. Chem. Phys. 103, 9053 (1995)

    Google Scholar 

  • M.J. de Ruijter, T.D. Blake, J. De Coninck, Langmuir 15, 7836 (1999)

    Google Scholar 

  • T. Werder, J.H. Walther, R.L. Jaffe, T. Halicioglu, P. Koumoutsakos, J. Phys. Chem. B 107, 1345 (2003)

    Google Scholar 

  • H.J.C. Berendsen, J.A. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Google Scholar 

  • P.E.M. Lopes, V. Murashov, M. Tazi, E. Demchuk, A.D. MacKerell Jr., J. Phys. Chem. B 110, 2782 (2006)

    Google Scholar 

  • M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987)

  • W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996), http://www.ks.uiuc.edu/Research/vmd/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Knaup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knaup, J., Köhler, C., Hoffmann, M. et al. Ab initio simulation of interface reactions as a foundation of understanding polymorphism. Eur. Phys. J. Spec. Top. 149, 127–144 (2007). https://doi.org/10.1140/epjst/e2007-00247-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00247-y

Keywords

Navigation