Skip to main content
Log in

Computation of nonlinear multiscale coupling effects in liquid phase epitaxy

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

A new two-scale model for liquid phase epitaxy is presented which enables the numerical simulation of processes with microstructures having an arbitrarily small scale. It is based on a BCF-model for epitaxial growth, a Navier–Stokes system and a convection-diffusion equation. The application of a homo- genization approach leads to a separation of scales; the resulting two-scale model consists of macroscopic partial differential equations for fluid flow and solute diffusion in the fluid volume, coupled to microscopic BCF-models. The two-scale model can be discretized using grids that are independent of the scale of the microstructure. Numerical experiments based on a phase field version of the BCF model are presented; the results illustrate the physical relevance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Bauser, Handbook of Crystal Growth, Vol. 3, edited by D.T.J. Hurle (North-Holland, Amsterdam, 1994)

  • W.K. Burton, N. Cabrera, F.C. Frank, Phil. Trans. Roy. Soc. 243, 299 (1951)

    Google Scholar 

  • G. Caginalp, Arch. Ration. Mech. Anal. 92, 205 (1986)

    Google Scholar 

  • A.A. Chernov, T. Nishinaga, Growth Shapes and Stability in Morphology of Crystals, edited by I. Sungawa (Terra Scientific Publ. Co., 1987), p. 270

  • W. Dorsch, S. Christiansen, M. Albrecht, P.O. Hansson, E. Bauser, H.P. Strunk, Surf. Sci. 896, 331 (1994)

    Google Scholar 

  • Ch. Eck, in Multiscale Modeling and Simulation, Vol. 3 (2004), p. 28

  • Ch. Eck, H. Emmerich, Models for Liquid Phase Epitaxy, Preprint 146 – DFG SPP 1095 “Mehrskalen probleme” (2004)

  • H. Emmerich, Ch. Eck, Cont. Mech. Thermodyn. 17, 373 (2006)

    Google Scholar 

  • R. Ghez, Int. J. Heat Mass Transfer 23, 425 (1980)

    Google Scholar 

  • L.D. Khutoryanskii, P.P. Petrov, Sov. Phys. Crystallogr. 23, 571 (1978)

    Google Scholar 

  • F.P.J. Kuijpers, G.F.M. Beenker, J. Cryst. Growth 48, 411 (1979)

    Google Scholar 

  • M.B. Small, E. Ghez, E. Gies, in Handbook of Crystal Growth, Vol. 3, edited by D.T.J. Hurle (North-Holland, Amsterdam, 1994)

  • V.V Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin, 1994)

  • H. Müller-Krumbhaar, J. Chem. Phys. 63, 5131 (1975)

    Google Scholar 

  • W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35, 444 (1964)

    Google Scholar 

  • E.M. Sparrow, J.L. Gregg, Trans. ASME J. Heat Transfer 82C, 294 (1960)

    Google Scholar 

  • N. Tokuda, J. Cryst. Growth 67, 358 (1984)

    Google Scholar 

  • W.R. Wilcox, J. Cryst. Growth 12, 93 (1972)

    Google Scholar 

  • L.O. Wilson, N.L. Schryer, J. Fluid Mech. 85, 479 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalupecký, V., Eck, C. & Emmerich, H. Computation of nonlinear multiscale coupling effects in liquid phase epitaxy. Eur. Phys. J. Spec. Top. 149, 1–17 (2007). https://doi.org/10.1140/epjst/e2007-00240-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00240-6

Keywords

Navigation