Skip to main content
Log in

On the origin of multiscaling in stochastic-field models of surface growth

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Multiscaling appears in some non-equilibrium systems when different moments of a bulk averaged state variable scale with different and nontrivial exponents. This multiexponent scaling behaviour is highly nontrivial and is associated with different fractal properties at different observation scales. It is unclear what kind of generic mechanisms could make multiscaling to emerge in continuous hydrodynamic descriptions of dynamical systems with only local interactions, governed by partial-differential equations, in the continuum. Here we present an extensive numerical study of a continuous model of epitaxial thin-film growth, which main characteristic is that it includes infinitely many nonlinearities. For strong enough nonlinearity, the model shows effective multiscaling over a range of time/length scales, while normal monoscaling is actually recovered at long wavelengths. We conjecture that the existence of infinitely many weakly relevant nonlinear terms may lead to this nontrivial scaling behaviour in a generic way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.-L. Barabási, H.E. Stanley, Fractal concepts in surface growth (Cambridge University Press, Cambridge, 1995)

  2. J. Krug, Avd. Phys. 46, 139 (1997)

    ADS  Google Scholar 

  3. A. Pimpinelli, J. Villain, Physics of Crystal Growth (Cambridge University Press, Cambridge, 1998)

  4. E. Bouchaud, J. Phys.: Condens. Matter 9, 4319 (1997)

    ADS  Google Scholar 

  5. M. Alava, M. Dub, M. Rost, Adv. Phys. 53, 83 (2004)

    Article  ADS  Google Scholar 

  6. H.G.E. Hentschel, J. Phys. A 27, 2269 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.M. López, M.A. Rodríguez, R. Cuerno, Phys. Rev. E 56, 3993 (1997)

    Article  ADS  Google Scholar 

  8. J.J. Ramasco, J.M. López, M.A. Rodríguez, Phys. Rev. Lett. 84, 2199 (2000)

    Article  ADS  Google Scholar 

  9. J.M. López, Phys. Rev. Lett. 83, 4594 (1999)

    Article  ADS  Google Scholar 

  10. J.M. López, M. Castro, R. Gallego, Phys. Rev. Lett. 94, 166103 (2005)

    Article  ADS  Google Scholar 

  11. J. Krug, Phys. Rev. Lett. 72, 2907 (1994)

    Article  ADS  Google Scholar 

  12. M. Schroeder, M. Siegert, D.E. Wolf, J.D. Shore, M. Plischke, Europhys. Lett. 24, 563 (1993)

    Article  ADS  Google Scholar 

  13. C. Dasgupta, S. Das Sarma, J.M. Kim, Phys. Rev. E 54, R4552 (1996)

    Article  ADS  Google Scholar 

  14. S. Das Sarma, C.J. Lanczycki, R. Kotlyar, S.V. Ghaisas, Phys. Rev. E 53, 359 (1996)

    Article  ADS  Google Scholar 

  15. C. Dasgupta, J.M. Kim, M. Dutta, S. Das Sarma, Phys. Rev. E 55, 2235 (1997)

    Article  ADS  Google Scholar 

  16. M. Myllys, J. Maunuksela, M.J. Alava, T. Ala-Nissila, J. Timonen, Phys. Rev. Lett. 84, 1946 (2000)

    Article  ADS  Google Scholar 

  17. M. Myllys, J. Maunuksela, M. Alava, T. Ala-Nissila, J. Merikoski, J. Timonen, Phys. Rev. E 64, 036101 (2001)

    Article  ADS  Google Scholar 

  18. M.A. Auger, L. Vázquez, R. Cuerno, M. Castro, M. Jergel, O. Sánchez, Phys. Rev. B 73, 045436 (2006)

    Article  ADS  Google Scholar 

  19. E. Bouchbinder, I. Procaccia, S. Santucci, L. Vanel, Phys. Rev. Lett. 96, 055509 (2006)

    Article  ADS  Google Scholar 

  20. Z.-W. Lai, S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991)

    Article  ADS  Google Scholar 

  21. J. Villain, J. Phys. I 1, 19 (1991)

    Google Scholar 

  22. D.E. Wolf, J. Villain, Europhys. Lett. 13, 389 (1990)

    Article  ADS  Google Scholar 

  23. J.M. Kim, S. Das Sarma, Phys. Rev. Lett. 72, 2903 (1994)

    Article  ADS  Google Scholar 

  24. J.M. López, M.A. Rodríguez, R. Cuerno, Physica A 246, 329 (1997)

    Article  ADS  Google Scholar 

  25. S. Das Sarma, S.V. Ghaisas, J.M. Kim, Phys. Rev. E 49, 122 (1994)

    Article  ADS  Google Scholar 

  26. J.K. Bhattacharjee, S. Das Sarma, R. Kotlyar, Phys. Rev. E 53, R1313 (1996)

    Article  ADS  Google Scholar 

  27. H.K. Janssen, Phys. Rev. Lett. 78, 1082 (1997)

    Article  ADS  Google Scholar 

  28. S.H. Yook, J.M. Kim, Y. Kim, Phys. Rev. E 56, 4085 (1997)

    Article  ADS  Google Scholar 

  29. S.H. Yook, C.K. Lee, Y. Kim, Phys. Rev. E 58, 5150 (1998)

    Article  ADS  Google Scholar 

  30. F.D.A. Aarão Reis, Phys. Rev. E 88, 022128 (2013)

    Article  ADS  Google Scholar 

  31. Hui Xia, Gang Tang, Zhipeng Xun, Dapeng Hao, Surf. Sci. 607, 138 (2013)

    Article  ADS  Google Scholar 

  32. R. Gallego, M. Castro, J.M. López, Phys. Rev. E 76, 051121 (2007)

    Article  ADS  Google Scholar 

  33. L. Giada, A. Giacometti, M. Rossi, Phys. Rev. E 65, 036134 (2002)

    Article  ADS  Google Scholar 

  34. R. Gallego, Appl. Math. Comput. 218, 3905 (2011)

    Article  MathSciNet  Google Scholar 

  35. C.G. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods, Scientific Computation (Springer, Heidelberg, 2007)

  36. J.G. Amar, P.-M. Lam, F. Family, Phys. Rev. E 47, 3242 (1993)

    Article  ADS  Google Scholar 

  37. U. Frisch, Turbulence: the legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Gallego.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallego, R., Castro, M. & López, J. On the origin of multiscaling in stochastic-field models of surface growth. Eur. Phys. J. B 89, 189 (2016). https://doi.org/10.1140/epjb/e2016-70132-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70132-5

Keywords

Navigation