Skip to main content

Advertisement

Log in

Modeling of thermal and solute transport within a Maxwell fluid in contact with a porous rotating disc

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the last few years, there has been much interest in nanofluids on a global scale because of their thermal implications in engineering and biological sciences. A growing number of researchers are looking into the possibility of suspending organized nanoparticles in one base fluid to further boost the thermal performance of conventional ordinary fluids, even though the performance of nanofluids is well-known and has shown promising results in heat transport phenomena. The development of global manufacturing is aided by the non-Newtonian fluid model, which enhances product performance and captures fluid flow dynamics. Therefore, the current study scrutinizes the three-dimensional (3D) rotating disc near a stagnation point flow of Maxwell nanofluid over a porous medium. The Maxwell nanofluid is selected as the operational fluid since it is indicated that this model accurately captures the behavior of viscoelastic fluids and is successful in modeling polymeric liquids. The considerable terms are convective heat, heat source/sink, and chemical species which have been implemented frequently in the present exploration. The thermophoresis and Brownian motion of the nanoparticles are monitored using a novel modification of Buongiorno's nanofluid model. The nature of Maxwell nanofluid is described by this model. The systems of modeled equations have been rendered into the set of ODEs and are derived via Von Kaman’s similarity transformations. A numerical approach, namely bvp4c in Matlab is used to compute the solution of the set of ODEs. The main implications of the rapidly growing parameters versus relevant domains are examined using graphical and tabular illustrations. The effects of different factors on the solution profiles are also discussed. The data obtained demonstrate that the radial velocity and angular velocity are reduced through the Deborah number parameter, while both velocities are significantly upswing with enlarging the rotational parameter for the respective phenomenon of suction and injection parameter. Additionally, it is renowned that the rotation of the disc causes a drop in the radial velocity and increases the angular velocity via the uplift of the Darcy parameter. It is also discovered that temperature and concentration profiles display diverse behavior for porous medium factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data have been included in the form of graphs and tables in this manuscript.

Abbreviations

\(c,b\) :

Constants

\(u,v,w\) :

Velocity components

\(r,\varphi ,z\) :

Cylindrical coordinates

\({\text{Re}}\) :

Reynolds number

\(\omega_1\) :

Angular velocity

\(u_{\text{e}}\) :

Free stream velocity

\(\lambda_1\) :

Deborah number

\(\lambda_2\) :

Porous medium

\(K\) :

Permeability parameter

\(\varepsilon\) :

Velocity ratio parameter

\(Fr\) :

Darcy Forchheimer parameter

\(\Pr\) :

Prandtl number

\(Nt\) :

Thermophoresis parameter

\(Nb\) :

Brownian motion parameter

\(\Upsilon\) :

Heat source/sink parameter

\(Sc\) :

Schmidt number

\(Cr\) :

Chemical reaction constant

\(S\) :

Suction/injection parameter

\(Bi\) :

Biot number

\(D_{\text{B}}\) :

Brownian diffusion coefficient

\(D_{\text{T}}\) :

Thermophoresis parameter

\(F,G,H\) :

Dimensionless velocity component

\(\Theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

\(\zeta\) :

Pseudo-similarity variable

\(T_{\text{f}}\) :

Temperature of the hot fluid

\(T_\infty\) :

Ambient temperature

\(C_{\text{w}}\) :

Concentration at the wall surface of the disc

\(C_\infty\) :

Ambient concentration

\(C_{\text{p}}\) :

Specific heat at constant pressure

\(C_{\text{F}}\) :

Skin friction

\(Nu_{\text{r}}\) :

Local Nusselt number

\(Sh_{\text{r}}\) :

Local Sherwood number

\(\beta_1\) :

Relaxation time of fluid

\(k\) :

Thermal conductivity

\(Q_\circ\) :

Volumetric rate of heat generation/absorption

\(\rho\) :

Density of the fluid

\(\upsilon\) :

Kinematic viscosity

\(k_1\) :

Chemical reaction rate constant

\(\tau\) :

Ratio of heat capacity to the base fluid

\(\psi\) :

Stream Function

\(\alpha_{\text{m}}\) :

Thermal diffusivity

References

  1. J.C. Maxwell, A treatise on electricity and magnetism. Lilliad Univ. Lille Sci. Technol. 1, 1831–1879 (1873)

    Google Scholar 

  2. A. Mushtaq, M. Mustafa, T. Hayat, A. Alsaedi, Buoyancy effects in stagnation-point flow of Maxwell fluid utilizing non-Fourier heat flux approach. PLoS ONE 13(5), e0192685 (2018)

    Article  Google Scholar 

  3. J. Ahmed, M. Khan, L. Ahmad, Joule heating effects in thermally radiative swirling flow of Maxwell fluid over a porous rotating disk. Int. J. Thermophys. 40, 106 (2019)

    Article  ADS  Google Scholar 

  4. W. Ibrahim, M. Negera, MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction. J. Egypt. Math. Soc. 7, 1–28 (2020)

    MathSciNet  Google Scholar 

  5. M.N. Khan, S. Nadeem, MHD stagnation point flow of a Maxwell nanofluid over a shrinking sheet (multiple solutions). Heat Transf. 50(5), 4729–4743 (2021)

    Article  Google Scholar 

  6. R. Biswas, Md.S. Hossain, R. Islam, S.F. Ahmed, S.R. Mishra, M. Afikuzzaman, Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation. J. Comp. Math. Data Sci. 4, 100048 (2022)

    Article  Google Scholar 

  7. T. Muhammad, H. Ahmad, U. Farooq, A. Akgül, Computational investigation of magnetohydrodynamics boundary of Maxwell fluid across nanoparticle-filled sheet. Al-Salam J. Eng. Technol. 2(2), 88–97 (2023)

    Article  Google Scholar 

  8. Z. Iqbal, M. Khan, M. Shoaib, R.T. Matoog, T. Muhammad, E.R. El-Zahar, Study of buoyancy effects in unsteady stagnation point flow of Maxwell nanofluid over a vertical stretching sheet in the presence of Joule heating. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2028932

    Article  Google Scholar 

  9. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, vol. 66 (ASME, New York, NY, USA, 1995), pp.99–105

    Google Scholar 

  10. W.A. Khan, I. Pop, Boundary layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  Google Scholar 

  11. M. Daba, P. Devaraj, Unsteady boundary layer flow of a nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation. Thermophys. Aerodyn. 23(3), 403–413 (2016)

    Article  ADS  Google Scholar 

  12. C. Liu, M.U. Khan, M. Ramzan, Y.-M. Chu, S. Kadry, M.Y. Malik, R. Chinram, Nonlinear radiative Maxwell nanofluid flow in a Darcy-Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection. Sci. Rep. 11, 9391 (2021)

    Article  ADS  Google Scholar 

  13. S. Roy, R.R. Kairi, Bio-Marangoni convection of Maxwell nanofluid over an inclined plate in a stratified Darcy-Forchheimer porous medium. J. Magn. Magn. Mater. 572, 170581 (2023)

    Article  Google Scholar 

  14. B.M. Makhdoum, Z. Mahmood, U. Khan, B.M. Fadhl, I. Khan, S.M. Eldin, Impact of suction with nanoparticles aggregation and joule heating on unsteady MHD stagnation point flow of nanofluids over a horizontal cylinder. Heliyon 9, e15012 (2023)

    Article  Google Scholar 

  15. U. Khan, A. Zaib, A. Ishak, I. Waini, A. Wakif, A.M. Galal, Agrawal nanofluid flow towards a stagnation point past a moving disk with Smoluchowski temperature and Maxwell velocity slip boundary conditions: the case of Buongiorno’s model. J. Appl. Math. Mech. 103(3), e202200051 (2023)

    MathSciNet  Google Scholar 

  16. S.S. Zafar, U. Khan, F. Ali, S.M. Eldin, A.M. Saeed, A. Zaib, A.M. Galal, Irreversibility analysis of radiative flow of Prandtl nanofluid over a stretched surface in Darcy-Forchheimer medium with activation energy and chemical reaction. Heliyon 9, e14877 (2023)

    Article  Google Scholar 

  17. T.V. Karman, Überlaminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  Google Scholar 

  18. J. Ahmed, M. Khan, L. Ahmad, Transient thin-film spin-coating flow of chemically reactive and radiative Maxwell nanofluid over a rotating disk. Appl. Phys. A 125, 161 (2019)

    Article  ADS  Google Scholar 

  19. M. Ramzan, N.S. Khan, P. Kumam, R. Khan, A numerical study of chemical reaction in a nanofluid flow due to rotating disk in the presence of magnetic field. Sci. Rep. 11, 19399 (2021)

    Article  ADS  Google Scholar 

  20. A. Dawar, E. Bonyah, S. Islam, A. Alshehri, Z. Shah, Theoretical analysis of Cu-H2O, Al2O3-H2O, and TiO2-H2O nanofluid flow past a rotating disk with velocity slip and convective conditions. J. Nanomater. 2021, 5471813 (2021)

    Article  Google Scholar 

  21. M.A. Nuwairan, A. Hafeez, A. Khalid, A. Syed, Heat generation/absorption effects on radiative stagnation point flow of Maxwell nanofluid by a rotating disk influenced by activation energy. Case Stud. Therm. Eng. 35, 102047 (2022)

    Article  Google Scholar 

  22. F. Ali, A. Zaib, M.I. Khan, F. Alzahrani, S.M. Eldin, Irreversibility analysis in stagnation point flow of tri-hybrid nanofluid over a rotating disk; application of kinetic energy. J. Indian Chem. Soc. 100, 100873 (2023)

    Article  Google Scholar 

  23. K. Mahmud, F.Z. Duraihem, R. Mehmood, S. Sarkar, S. Saleem, Heat transport in inclined flow towards a rotating disk under MHD. Sci. Rep. 13, 5949 (2023)

    Article  ADS  Google Scholar 

  24. J. Visuvasam, H. Alotaibi, Analysis of Von Kármán swirling flows due to a porous rotating disk electrode. Micromachines 14(3), 582 (2023)

    Article  Google Scholar 

  25. U. Khan, A. Zaib, I. Waini, A. Ishak, E.S.M. Sherif, W.F. Xia, N. Muhammad, Impact of Smoluchowski temperature and Maxwell velocity slip conditions on axisymmetric rotated flow of hybrid nanofluid past a porous moving rotating disk. Nanomaterials 12(2), 276 (2022)

    Article  Google Scholar 

  26. U. Khan, A. Zaib, S. Abu Bakar, A. Ishak, Unsteady stagnation-point flow of a hybrid nanofluid over a spinning disk: analysis of dual solutions. Neural Comput. Appl. 34(10), 8193–8210 (2022)

    Article  Google Scholar 

  27. T. Hayat, F. Haider, T. Muhammad, A. Alsaedi, Darcy-Forchheimer flow by rotating disk with partial slip. Appl. Math. Mech. Engl. Ed. 41(5), 741–752 (2020)

    Article  MathSciNet  Google Scholar 

  28. U. Khan, A. Zaib, A. Ishak, N.C. Roy, S.A. Bakar, T. Muhammad, I.S. Yahia, Exact solutions for MHD axisymmetric hybrid nanofluid flow and heat transfer over a permeable non-linear radially shrinking/stretching surface with mutual effects of thermal radiation. Eur. Phys. J. Spec. Top. 231(6), 1195–1204 (2022)

    Article  Google Scholar 

  29. M. Yaseen, S.K. Rawat, U. Khan, A.S. Negi, M. Kumar, E.S.M. Sherif, I. Pop, Inspection of unsteady buoyancy and stagnation point flow incorporated by Ag-TiO2 hybrid nanoparticles towards a spinning disk with Hall effects. Case Stud. Therm. Eng. 44, 102889 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Hail—Saudi Arabia through project number RG-23 082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umair Khan.

Ethics declarations

Conflict of interest

The authors of the article report no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizan, M., Zaib, A., Khan, U. et al. Modeling of thermal and solute transport within a Maxwell fluid in contact with a porous rotating disc. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01135-0

Navigation