Skip to main content

Advertisement

Log in

Changes in EEG oscillatory patterns due to acute stress caused by orthodontic correction

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The manuscript presents a pilot study of the impact of orthodontic intervention on the brain electrical activity. The orthodontic treatment is a powerful factor of both physiological influence on the jaw system and the surrounding tissues of the head and stress influence. All practically healthy subjects of the same age category (18–25 years) were distributed among three groups based on the method of orthodontic treatment. Group 1 included patients using braces, groups 2 and 3 included patients using aligners in which pressure was applied to 3–5 or 1–2 teeth, respectively. Brain activity electroencephalographic data were collected twice during neurophysiological monitoring: before and after orthodontic correction. The collected data sets included EEG signals from the occipital region of the brain. Numerical processing was performed based on continuous wavelet analysis to estimate the number and duration of oscillatory patterns in narrow frequency bands from 1 to 50 Hz. An assessment of the oscillatory brain activity demonstrated that different grades of correction intensity, regarding the dentition and occlusion, lead to uniform changes in the oscillatory patterns assessed by the electroencephalography in the occipital lobe. Comparison of the number of oscillatory patterns in the groups showed significant changes in the high-frequency \(\bigcup _\textrm{HF} \ni \left\{ \left[ 16;18\right] , \left[ 20;28\right] , \left[ 32;34\right] , \left[ 42;50\right] \right\}\) Hz. The number of patterns in the \(\bigcup _\textrm{HF}\)-band increases when using the most intense bracket devices; while in cases of more gentle correction based on aligner systems, it remains unchanged or even decreases. The independent clustering procedure by assessing changes in oscillatory processes of \(\bigcup _\textrm{HF}\)-band occurring in a single occipital O1-canal made it possible to divide the data array into three clusters. The clusters of changes in brain activity correspond to clinical groups of patients. Thus, different types of dental exposure lead to significantly different changes in the brain activity of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Long, Y. Wang, F. Jian, L.-N. Liao, X. Yang, W.-L. Lai, Current advances in orthodontic pain. Int. J. Oral Sci. 8(2), 67–75 (2016)

    Article  Google Scholar 

  2. C. Feng, C. Wu, Z. Jiang, L. Zhang, X. Zhang, Effectiveness of different psychological interventions in reducing fixed orthodontic pain: a systematic review and meta-analysis. Austral. Orthod. J. 35(2), 195–209 (2019)

    Article  Google Scholar 

  3. J. Wang, D. Wu, Y. Shen, Y. Zhang, Y. Xu, X. Tang, R. Wang, Cognitive behavioral therapy eases orthodontic pain: EEG states and functional connectivity analysis. Oral Dis. 21(5), 572–582 (2015)

    Article  Google Scholar 

  4. D. Wu, Hearing the sound in the brain: influences of different EEG references. Front. Neurosci. 12, 148 (2018)

    Article  Google Scholar 

  5. A.E. Aly, I. Hansa, D.J. Ferguson, N.R. Vaid, The effect of alpha binaural beat music on orthodontic pain after initial archwire placement: a randomized controlled trial. Dental Press J. Orthod. 27, e2221150 (2023)

    Article  Google Scholar 

  6. R. Huang, J. Wang, D. Wu, H. Long, X. Yang, H. Liu, X. Gao, R. Zhao, W. Lai, The effects of customised brainwave music on orofacial pain induced by orthodontic tooth movement. Oral Dis. 22(8), 766–774 (2016)

    Article  Google Scholar 

  7. V. Legrain, D.M. Torta, Cognitive psychology and neuropsychology of nociception and pain, in Pain, Emotion and Cognition: A Complex Nexus (Springer, 2015), pp. 3–20

  8. W. Liu, C. Cui, Z. Hu, J. Li, J. Wang, Changes of neuroplasticity in cortical motor control of human masseter muscle related to orthodontic treatment. J. Oral Rehabil. 49(2), 258–264 (2022)

    Article  Google Scholar 

  9. M.Z. Pimenidis, Orthodontic avenues to neuroplasticity, in The Neurobiology of Orthodontics: Treatment of Malocclusion Through Neuroplasticity (2009), pp. 131–136

  10. C. Restrepo, P. Botero, D. Valderrama, K. Jimenez, R. Manrique, Brain cortex activity in children with anterior open bite: A pilot study. Front. Hum. Neurosci. 14, 220 (2020)

    Article  Google Scholar 

  11. I.B. Black, The Changing Brain: Alzheimer’s Disease and Advances in Neuroscience (Oxford University Press, USA, 2002)

    Book  Google Scholar 

  12. I. Cioffi, Biological and psychological factors affecting the sensory and jaw motor responses to orthodontic tooth movement. Orthod. Craniofac. Res. 00, 1–9 (2023)

  13. M. Novikov, M. Zhuravlev, A. Maksimova, R. Nasrullaev, D. Suetenkov, Effect of orthodontic correction characteristics in brain electrical activity. in Computational Biophysics and Nanobiophotonics, SPIE, vol. 12194 (2022), pp. 279–284

  14. C.-S. Lin, Dental Neuroimaging: The Role of the Brain in Oral Functions (John Wiley & Sons, New York, 2021)

    Google Scholar 

  15. Y. Ariji, H. Kondo, K. Miyazawa, S. Sakuma, M. Tabuchi, Y. Kise, M. Nakayama, S. Koyama, A. Togari, S. Goto et al., Study on regional activities in the human brain caused by low-level clenching and tooth separation: investigation with functional magnetic resonance imaging. Oral Sci. Int. 16(2), 87–94 (2019)

    Article  Google Scholar 

  16. F. Zhang, F. Li, H. Yang, Y. Jin, W. Lai, G.J. Kemp, Z. Jia, Q. Gong, Altered brain topological property associated with anxiety in experimental orthodontic pain. Front. Neurosci. 16, 907216 (2022)

    Article  Google Scholar 

  17. H. Yang, X. Yang, H. Liu, H. Long, H. Hu, Q. Wang, R. Huang, D. Shan, K. Li, W. Lai, Placebo modulation in orthodontic pain: a single-blind functional magnetic resonance study. Radiol. Med. (Torino) 126(10), 1356–1365 (2021)

    Article  Google Scholar 

  18. F. Zhang, F. Li, H. Yang, Y. Jin, W. Lai, N. Roberts, Z. Jia, Q. Gong, Effect of experimental orthodontic pain on gray and white matter functional connectivity. CNS Neurosci. Therapeut. 27(4), 439–448 (2021)

    Article  Google Scholar 

  19. A. Runnova, M. Zhuravlev, R. Ukolov, I. Blokhina, A. Dubrovski, N. Lezhnev, E. Sitnikova, E. Saranceva, A. Kiselev, A. Karavaev et al., Modified wavelet analysis of ECoG-pattern as promising tool for detection of the blood–brain barrier leakage. Sci. Rep. 11(1), 1–8 (2021)

    Article  Google Scholar 

  20. M. Simonyan, A. Fisun, G. Afanaseva, O. Glushkovskaya-Semyachkina, I. Blokhina, A. Selskii, M. Zhuravlev, A. Runnova, Oscillatory wavelet-patterns in complex data: mutual estimation of frequencies and energy dynamics. Eur. Phys. J. Spec. Top. 232(5), 595–603 (2023)

    Article  Google Scholar 

  21. M.O. Zhuravlev, A.O. Kiselev, A.E. Runnova, Study of the characteristics of eeg frequency patterns: the automatic marking of sleep stage without additional physiological signals, in 2022 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT &QM &IS) (IEEE, 2022), pp. 352–355

  22. K. Sergeev, A. Runnova, M. Zhuravlev, O. Kolokolov, N. Akimova, A. Kiselev, A. Titova, A. Slepnev, N. Semenova, T. Penzel, Wavelet skeletons in sleep EEG-monitoring as biomarkers of early diagnostics of mild cognitive impairment. Chaos Interdiscip. J. Nonlinear Sci. 31(7), 073110 (2021)

    Article  Google Scholar 

  23. G. Djeu, C. Shelton, A. Maganzini, Outcome assessment of invisalign and traditional orthodontic treatment compared with the American board of orthodontics objective grading system. Am. J. Orthod. Dentofac. Orthop. 128(3), 292–298 (2005)

    Article  Google Scholar 

  24. World Medical Association, World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20), 2191–2194 (2013)

    Article  Google Scholar 

  25. C. Brennan, A. Worrall-Davies, D. McMillan, S. Gilbody, A. House, The hospital anxiety and depression scale: a diagnostic meta-analysis of case-finding ability. J. Psychosom. Res. 69(4), 371–378 (2010)

    Article  Google Scholar 

  26. A.S. Zigmond, R.P. Snaith, The hospital anxiety and depression scale. Acta Psychiatr. Scand. 67(6), 361–370 (1983)

    Article  Google Scholar 

  27. D.J. Rinchuse, D.J. Rinchuse, Ambiguities of Angle’s classification. Angle Orthod. 59(4), 295–298 (1989)

    Google Scholar 

  28. M.S. Alhammadi, E. Halboub, M.S. Fayed, A. Labib, C. El-Saaidi, Global distribution of malocclusion traits: a systematic review. Dental Press J. Orthod. 23, 40–1 (2018)

    Article  Google Scholar 

  29. T. Weir, Clear aligners in orthodontic treatment. Aust. Dent. J. 62, 58–62 (2017)

    Article  Google Scholar 

  30. M.O. Lagravere, C. Flores-Mir, The treatment effects of invisalign orthodontic aligners: a systematic review. J. Am. Dent. Assoc. 136(12), 1724–1729 (2005)

    Article  Google Scholar 

  31. A. Morley, L. Hill, A. Kaditis, 10–20 System EEG Placement (European Respiratory Society, European Respiratory Society, 2016)

  32. A. Runnova, M. Zhuravlev, A. Koronovskiy, A. Hramov, Mathematical approach to recover eeg brain signals with artifacts by means of Gram-Schmidt transform. In: Saratov Fall Meeting 2016: Laser Physics and Photonics XVII; and Computational Biophysics and Analysis of Biomedical Data III, SPIE, vol. 10337 (2017), pp. 254–259

  33. C.S. Kim, J. Sun, D. Liu, Q. Wang, S.G. Paek, Removal of ocular artifacts using ICA and adaptive filter for motor imagery-based BCI. IEEE/CAA J. Automat. Sin. 1–8 (2017)

  34. M.P. Milali, M.T. Sikulu-Lord, S.S. Kiware, F.E. Dowell, R.J. Povinelli, G.F. Corliss, Do NIR spectra collected from laboratory-reared mosquitoes differ from those collected from wild mosquitoes? PLoS One 13(5), 0198245 (2018)

    Article  Google Scholar 

  35. S.C. Johnson, Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

    Article  Google Scholar 

  36. G. Karypis, V. Kumar, M. Steinbach, A comparison of document clustering techniques, in KDD Workshop on Text Mining (2000)

  37. O. Jensen, P. Goel, N. Kopell, M. Pohja, R. Hari, B. Ermentrout, On the human sensorimotor-cortex beta rhythm: sources and modeling. Neuroimage 26(2), 347–355 (2005)

    Article  Google Scholar 

  38. J.E. Desmedt, C. Tomberg, Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci. Lett. 168(1–2), 126–129 (1994)

    Article  Google Scholar 

  39. D.W. Loring, D.E. Sheer, J.W. Largen, Forty hertz eeg activity in dementia of the Alzheimer type and multi-infarct dementia. Psychophysiology 22(1), 116–121 (1985)

    Article  Google Scholar 

  40. G. Pfurtscheller, C. Neuper, Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. Neuroreport 3(12), 1057–1060 (1992)

    Article  Google Scholar 

  41. W.-L. Zheng, J.-Y. Zhu, B.-L. Lu, Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. 10(3), 417–429 (2017)

    Article  Google Scholar 

  42. C. Babiloni, F. Vecchio, M. Miriello, G.L. Romani, P.M. Rossini, Visuo-spatial consciousness and parieto-occipital areas: a high-resolution EEG study. Cereb. Cortex 16(1), 37–46 (2006)

    Article  Google Scholar 

  43. J. Williams, Frequency-specific effects of flicker on recognition memory. Neuroscience 104(2), 283–286 (2001)

    Article  Google Scholar 

  44. A.E. Hramov, V.A. Maksimenko, S.V. Pchelintseva, A.E. Runnova, V.V. Grubov, V.Y. Musatov, M.O. Zhuravlev, A.A. Koronovskii, A.N. Pisarchik, Classifying the perceptual interpretations of a bistable image using EEG and artificial neural networks. Front. Neurosci. 11, 674 (2017)

    Article  Google Scholar 

  45. F. Chiappelli, J. Bauer, S. Spackman, P. Prolo, M. Edgerton, C. Armenian, J. Dickmeyer, S. Harper, Dental needs of the elderly in the 21st century. Gen. Dent. 50(4), 358–363 (2002)

    Google Scholar 

  46. M.W.U. Khan, M. Azeem, Frequency of medical co-morbidities in oral surgery, prosthodontic and orthodontic patients. JPDA 29(1), 38–41 (2020)

    MathSciNet  Google Scholar 

  47. N.C.F. Fagundes, R.S.D. Couto, A.P.T. Brandao, L.A. de Oliveira Lima, L. de Oliveira Bittencourt, R.D. de Souza-Rodrigues, M.A.M. Freire, L.C. Maia, R.R. Lima, Association between tooth loss and stroke: a systematic review. J. Stroke Cerebrovasc. Dis. 29(8), 104873 (2020)

    Article  Google Scholar 

  48. M. Gutiérrez, S. Valenzuela, R. Miralles, C. Portus, H. Santander, A. Fuentes, I. Celhay, Does breathing type influence electromyographic activity of obligatory and accessory respiratory muscles? J. Oral Rehabil. 41(11), 801–808 (2014)

    Article  Google Scholar 

  49. Y. Ono, T. Yamamoto, K.-Y. Kubo, M. Onozuka, Occlusion and brain function: mastication as a prevention of cognitive dysfunction. J. Oral Rehabil. 37(8), 624–640 (2010)

    Google Scholar 

  50. N.A. Parkin, S. Almutairi, P.E. Benson, Surgical exposure and orthodontic alignment of palatally displaced canines: can we shorten treatment time? J. Orthod. 46(1Suppl), 54–59 (2019)

    Article  Google Scholar 

  51. N. Zimmo, M. Saleh, G. Mandelaris, H.-L. Chan, H.-L. Wang, Corticotomy-accelerated orthodontics: a comprehensive review and update. Compendium 38(1), 1–8 (2017)

    Google Scholar 

  52. G. Doshi-Mehta, W.A. Bhad-Patil, Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am. J. Orthod. Dentofac. Orthop. 141(3), 289–297 (2012)

    Article  Google Scholar 

  53. S. Dab, K. Chen, C. Flores-Mir, Short-and long-term potential effects of accelerated osteogenic orthodontic treatment: a systematic review and meta-analysis. Orthod. Craniofac. Res. 22(2), 61–68 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Sc. Alexander S. Fedonnikov, Vice-Rector for Research at V. I. Razumovsky Saratov State Medical University, for help in organization of the survey and clinical recordings of volunteers.

Funding

Study is carried out within the framework of the state task of the Russian Federation’s Ministry of Health #056-00030-21-01 dated 02052021 “Theoretical and experimental study of the integrative activity of various physiological systems of patient under stress” (the State registration number # 121030900357-3).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization MZ; funding acquisition AR, and AK; data curation DaS, MS, RN, RP, resources RP, DmS; project administration AR and MZ; supervision AR and AK; software MZ, RN; investigation RP, DaS, DmS; methodology MZ, AR; validation MS; visualization RN; writing—review and editing MZ, DaS, RP, AR, MS, RN, AK, and DmS.

Corresponding author

Correspondence to Maksim Zhuravlev.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, M., Suetenkova, D., Parsamyan, R. et al. Changes in EEG oscillatory patterns due to acute stress caused by orthodontic correction. Eur. Phys. J. Spec. Top. (2023). https://doi.org/10.1140/epjs/s11734-023-01064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-01064-4

Navigation