Skip to main content
Log in

Chaotic dynamics in a non-linear tumor-immune model with Caputo–Fabrizio fractional operator

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this article, we investigate a tumor-immune and antigen-presenting cells population in the form of a mathematical model. To achieve greater accuracy in understanding the spread of tumor and immune cell populations, we apply the Caputo–Fabrizio (CF) fractional-order derivative. The fixed-point theorems are employed to analyze the uniqueness and existence of the model. The Laplace transform along with the Adomian decomposition approach is used to construct an algorithm for a semi-analytical solution under the CF fractional derivative. The chaotic dynamics of the cancer-immune model are confirmed by the Lyapunov exponents. The article examines how different vaccination protocols can affect tumor dormancy and recurrence. Furthermore, we offer a description for why adoptive immunotherapy techniques may potentially increase tumor growth rather than suppress it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the manuscript.

References

  1. A. Abbas, A. Lichtman, S. Pillai, Cellular and Molecular Immunology, 6th edn. (Saunders, Amsterdam, 2007)

    Google Scholar 

  2. G. Parmiani, T.L. Michael (eds.), Tumor Immunology: Molecularly Defined Antigens and Clinical Applications, vol. 1 (CRC Press, Boca Raton, 2002)

    Google Scholar 

  3. N. Bellomo, A. Bellouquid, E. De Angelis, The modelling of the immune competition by generalized kinetic (Boltzmann) models: review and research perspectives. Math. Comput. Model. 37(1–2), 65–86 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Bellomo, M. Delitala, From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Phys. Life Rev. 5(4), 183–206 (2008)

    Article  ADS  Google Scholar 

  5. N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Model. 32(3–4), 413–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. L.G. de Pillis, G. Weiqing, A.E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theor. Biol. 238(4), 841–862 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. N. Kronik, Y. Kogan, V. Vainstein, Z. Agur, Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57(3), 425–439 (2008)

    Article  Google Scholar 

  8. M. Bodnar, U. Foryś, Three types of simple DDE’s describing tumor growth. J. Biol. Syst. 15(04), 453–471 (2007)

    Article  MATH  Google Scholar 

  9. Szymanska, Z. Analysis of immunotherapy models in the context of cancer dynamics (2003)

  10. U. Foryś, Marchuk’s model of immune system dynamics with application to tumour growth. J. Theoret. Med. 4(1), 85–93 (2002)

    Article  MATH  Google Scholar 

  11. S.Z. Rida, A.S. Abdel Rady, A.A.M. Arafa, M. Khalil, Approximate analytical solution of the fractional epidemic model. IJMR 1, 17–19 (2012)

  12. S.C. Brailsford et al., An analysis of the academic literature on simulation and modelling in health care. J. Simul. 3(3), 130–140 (2009)

    Article  Google Scholar 

  13. S. Saifullh, A. Ali, E.F.D. Goufo, Investigation of complex behaviour of fractal fractional chaotic attractor with Mittag-Leffler kernel. Chaos Solitons Fractals 152, 111332 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Z.A. Khan, J. Khan, S. Saifullah, A. Ali, Dynamics of hidden attractors in four-dimensional dynamical systems with power law. J. Funct. Sp. 2022, Article ID 3675076 (2022)

  15. S. Saifullah, E.F.D. Goufo, A. Ali, Dynamical study of a novel three-dimensional and generalized chaotic system. Phys. Scripta 97(7), 074003 (2022)

    Article  ADS  Google Scholar 

  16. K. Shah, M. Sinan, T. Abdeljawad, M.A. El-Shorbagy, B. Abdalla, M.S. Abualrub, A detailed study of a fractal-fractional transmission dynamical model of viral infectious disease with vaccination. Complexity 20, 22 (2022)

    Google Scholar 

  17. A. Khan, K. Shah, T. Abdeljawad, M. Sher, On fractional order sine-Gordon equation involving nonsingular derivative. Fractals 20, 10 (2022)

    Google Scholar 

  18. K. Shah, T. Abdeljawad, Study of a mathematical model of COVID-19 outbreak using some advanced analysis. Waves Random Complex Media 20, 1–18 (2022)

    Google Scholar 

  19. K. Shah, T. Abdeljawad, F. Jarad, Q. Al-Mdallal, On nonlinear conformable fractional order dynamical system via differential transform method. Comput. Model. Eng. Sci. 136(2), 1457–1472 (2023)

    Google Scholar 

  20. K. Shah, M. Arfan, A. Ullah, Q. Al-Mdallal, K.J. Ansari, T. Abdeljawad, Computational study on the dynamics of fractional order differential equations with applications. Chaos Solitons Fractals 157, 111955 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Shah, A. Ali, S. Zeb, A. Khan, M.A. Alqudah, T. Abdeljawad, Study of fractional order dynamics of nonlinear mathematical model. Alex. Eng. J. 61(12), 11211–11224 (2022)

    Article  Google Scholar 

  22. K. Shah, T. Abdeljawad, R.U. Din, To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate. Phys. A 604, 127915 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. I. N’Doye, H. Voos, M. Darouach, Chaos in a fractional order cancer system. In: 2014 European Control Conference (ECC), pp. 171–176, Strasbourg, France (2014)

  24. E. Balcı, İ Öztürk, S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos Solitons Fractals 123, 43–51 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. B. Joshi, X. Wang, S. Banerjee, H. Tian, A. Matzavinos, M.A.J. Chaplain, On immunotherapies and cancer vaccination protocols: a mathematical modelling approach. J. Theor. Biol. 259(4), 820–827 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. V. Marsden, A. Strasser, Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol. 21, 71–105 (2003)

    Article  Google Scholar 

  27. A.A. Kilbas, H. Srivastava, J. Trujillo, Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies, vol. 204 (Elseveir, Amsterdam, 2006)

    Google Scholar 

  28. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering (Academic Press, New York, 1999)

    MATH  Google Scholar 

  29. V. Lakshmikantham, S. Leela, J. Vasundhara, Theory of Fractional Dynamic Systems (Cambridge Academic Publishers, Cambridge, 2009)

    MATH  Google Scholar 

  30. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  31. F. Awawdeh, A. Adawi, Z. Mustafa, Solutions of the SIR models of epidemics using HAM. Chaos Solit. Fract. 42, 3047–3052 (2009)

    Article  ADS  MATH  Google Scholar 

  32. J. Biazar, Solution of the epidemic model by Adomian decomposition method. Appl. Math. Comput. 173, 1101–1106 (2006)

    MathSciNet  MATH  Google Scholar 

  33. M. Rafei, D.D. Ganji, H. Daniali, Solution of the epidemic model by homotopy perturbation method. Appl. Math. Comput. 187, 1056–1062 (2007)

    MathSciNet  MATH  Google Scholar 

  34. S.Z. Rida, A.A.M.Y.A. Gaber, Solution of the fractional epidimic model by LADM. Frac. Calc. Appl. 7(1), 189–195 (2016)

  35. A. Ali, Z. Gul, W.A. Khan, S. Ahmad, S. Zeb, Investigation of fractional sine-Gordon equation by using Laplace Adomian decomposition method. Fractals 29(5), 2150121 (2021)

    Article  ADS  MATH  Google Scholar 

  36. M. Al-Refai, T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel. Adv. Differ. Equ. 2017, 315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 2017, 313 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, 1–13 (2015)

    Google Scholar 

  39. S.A. Khan, K. Shah, F. Jarad, G. Zaman, Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative. Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Zhang, M. ur Rahman, M. Arfan, A. Ali, Investigation of mathematical model of transmission co-infection TB in HIV community with a non-singular kernel. Results Phys. 28, 104559 (2021)

  41. I. Haq, A. Khan, S. Ahmad, A. Ali, M. Ur Rahman, Modeling and analysis of a fractional anthroponotic cutaneous leishmania model with Atangana–Baleanu derivative. Comput. Methods Biomech. Biomed. Eng. 20, 1–22 (2022)

  42. F. Haq, K. Shah, G. Rahman, M. Shahzad, Numerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells. Comput. Meth. Differ. Equ. 5(1), 1–11 (2017)

    MATH  Google Scholar 

  43. K. Shah, F. Jarad, T. Abdeljawad, On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative. Alex. Eng. J. 59(4), 2305–2313 (2020)

    Article  Google Scholar 

  44. T. Matsumoto, L.O. Chua, M. Komuro, The double scroll. IEEE Trans. Circ. Syst. 32, 797–818 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  45. L.O. Chua, M. Komuro, T. Matsumoto, The double scroll family: 1. Rigorous proof of chaos. IEEE Trans. Circ. Syst. 33, 1072–1097 (1986)

  46. S.P. Banks, Analysis and structure of a new chaotic system. Int. J. Bifurc. Chaos 9, 1571–1583 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

It is also declared that all the authors have equal contribution in the manuscript. Furthermore, the authors have checked and approved the final version of the manuscript.

Corresponding author

Correspondence to Amir Ali.

Ethics declarations

Conflict of interest

It is declared that all the authors have no conflict of interest regarding this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Althobaiti, S., Althobaiti, A. et al. Chaotic dynamics in a non-linear tumor-immune model with Caputo–Fabrizio fractional operator. Eur. Phys. J. Spec. Top. 232, 2513–2529 (2023). https://doi.org/10.1140/epjs/s11734-023-00929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00929-y

Navigation