Skip to main content
Log in

Mean square displacement of a free quantum particle on the basis of thermal Gaussian wave packets

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The mean square displacement \(\left\langle \left( x(t)-x(0)\right) ^2\right\rangle _{}\) of the position x of a free particle of mass m is evaluated quantum mechanically in terms of thermal Gaussian wave packets (Marquardt in Mol Phys 119(17-18): e1974110, https://doi.org/10.1080/00268976.2021.1974110, 2021). Such states represent a particle at thermal equilibrium. The approach allows us to address the evaluation of the mean square displacement in the continuum as well as under periodic boundary conditions. In the latter case, an analytical expression is obtained which is identical to the expression obtained on the basis of plane waves (Marquardt in Mol Phys 19(17-18): e1971315, https://doi.org/10.1080/00268976.2021.1971315, 2021). Results are discussed with respect to the quantum mechanical representation of observables related to the mean square displacement of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

There is no data associated in the manuscript.

Notes

  1. In Ref. [2] the natural unit \(\lambda _{\textrm{T}}=\lambda _{\textrm{th}}/2\pi\) was used to denote the thermal de Broglie wavelength, and the symbol \(t_{\textrm{T}}\) was used to denote the thermal time.

  2. In Ref. [8], stationary states were defined as having a negative momentum \(-\hbar \,q_k\).

  3. In ref. [8] two typos are to be notified: first, the double root in the denominator of equation (12) should extend over \(2\pi\) only, while its original equation (1.1) in the appendix of that work is correct; secondly, the first phase term in equation (1.3) of the appendix must have the opposite sign.

  4. In Ref. [8] a further typo is to be notified: in the argument of the exponential function under the integral in Eq. (3.1) a factor \(\pi\) must be added.

References

  1. R.C. Tolman, The Principles of Statistical Mechanics (Oxford University Press, Oxford, 1938)

    MATH  Google Scholar 

  2. R. Marquardt, Mean square displacement of a free quantum particle in a thermal state. Mol. Phys. 119(17–18), e1971315 (2021). https://doi.org/10.1080/00268976.2021.1971315

    Article  ADS  Google Scholar 

  3. F. Di Maiolo, D. Brey, R. Binder, I. Burghardt, Quantum dynamical simulations of intra-chain exciton diffusion in an oligo (para-phenylene vinylene) chain at finite temperature. J. Chem. Phys. 153(18), 184107 (2020). https://doi.org/10.1063/5.0027588

    Article  ADS  Google Scholar 

  4. C. Kittel, H. Krömer, Thermal Physics, 2nd edn. (Freeman, San Francisco, 1980)

    Google Scholar 

  5. B. Vacchini, K. Hornberger, Quantum linear Boltzmann equation. Phys. Rep. 478(4), 71–120 (2009). https://doi.org/10.1016/j.physrep.2009.06.001

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Krilov, E. Sim, B.J. Berne, Quantum time correlation functions from complex time Monte Carlo simulations: a maximum entropy approach. J. Chem. Phys. 114(3), 1075–1088 (2001). https://doi.org/10.1063/1.1331613

    Article  ADS  Google Scholar 

  7. S. Habershon, B.J. Braams, D.E. Manolopoulos, Quantum mechanical correlation functions, maximum entropy analytic continuation, and ring polymer molecular dynamics. J. Chem. Phys. 127(17), 174108 (2007). https://doi.org/10.1063/1.2786451

    Article  ADS  Google Scholar 

  8. R. Marquardt, Thermal gaussian wave packets. Mol. Phys. 119(17–18), e1974110 (2021). https://doi.org/10.1080/00268976.2021.1974110

    Article  ADS  Google Scholar 

  9. A. Messiah, Mécanique Quantique (Dunod, Paris, 1969)

    Google Scholar 

  10. A. Chenu, M. Combescot, Many-body formalism for thermally excited wave packets: a way to connect the quantum regime to the classical regime. Phys. Rev. A 95, 062124 (2017). https://doi.org/10.1103/PhysRevA.95.062124

    Article  ADS  Google Scholar 

  11. K. Hornberger, J.E. Sipe, Collisional decoherence reexamined. Phys. Rev. A 68, 012105 (2003). https://doi.org/10.1103/PhysRevA.68.012105

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Fabien Gatti, Jean-Christophe Tremblay, Souvik Mandal and Salvador Miret-Artés for fruitful discussions. This work has been funded by the Agence Nationale de la Recherche (ANR) under project code name QDDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Marquardt.

Ethics declarations

Conflict of interest

The authors declare to have no financial or non-financial interests related to the present work.

Appendices

Appendix 1. Pseudo-thermal density matrix

Let

$$\begin{aligned} |{{\psi _{\theta }}(t)}\rangle = \int \limits _{-L/2}^{L/2}\,\textrm{d}{y}\;\int \limits _{-\infty }^{\infty }\,\textrm{d}{q}\;\gamma (y,q;\theta )\;|{\psi _{}^{\mathrm{(G)}}(t;y,q)}\rangle , \end{aligned}$$
(28)

where \(\gamma\) and \(\psi _{}^{\mathrm{(G)}}\) are defined in Eqs. (15) and (10), respectively, and L is a length. Furthermore let

$$\begin{aligned} {\rho _{\theta }}\left( t;{q^\prime },q\right)= & {} \langle {\phi (0;{q^\prime })}|{{\psi _{\theta }}(t)}\rangle \langle {{\psi _{\theta }}(t)}|{\phi (0;q)}\rangle \nonumber \\= & {} \int \limits _{-L/2}^{L/2}\,\textrm{d}{{\tilde{y}}}\;\int \limits _{-\infty }^{\infty }\,\textrm{d}{{\tilde{q}}}\;\gamma ^*\left( {\tilde{y}},{\tilde{q}};\theta \right) \; \int \limits _{-L/2}^{L/2}\,\textrm{d}{{\tilde{\tilde{y}}}}\;\int \limits _{-\infty }^{\infty }\,\textrm{d}{{\tilde{\tilde{q}}}}\;\gamma \left( {\tilde{\tilde{y}}},{\tilde{\tilde{q}}};\theta \right) \; \nonumber \\{} & {} \quad \times \langle {\phi \left( 0;{q^\prime }\right) }|{\psi _{}^{\mathrm{(G)}}\left( t;{\tilde{y}},{\tilde{q}}\right) }\rangle \langle {\psi _{}^{\mathrm{(G)}}\left( t;{\tilde{\tilde{y}}},{\tilde{\tilde{q}}}\right) }|{\phi (0;q)}\rangle , \end{aligned}$$
(29)

be the density matrix element of state \({\psi _{\theta }}(t)\) in the basis of eigenstates of the system’s Hamiltonian. Averaging over random phases yields (see Eq. (17))

$$\begin{aligned}{} \left\langle {\rho _{\theta }}\left( t;{q^\prime },q\right) \right\rangle _{\theta } {} & =\;\textrm{e}^{\displaystyle \textrm{i}\,\left( {q^\prime }^2-q^2\right) \,D_{\textrm{q}}\,t}\nonumber\\ {}&\quad\times \int \limits _{-L/2}^{L/2}\,\textrm{d}{{\tilde{y}}}\; \int \limits _{-\infty }^{\infty }\,\textrm{d}{{\tilde{q}}}\;\;|\gamma \left( {\tilde{y}},{\tilde{q}};0\right) |^2\; f^*\left( {q^\prime };{\tilde{y}},{\tilde{q}}\right) \;f\left( q;{\tilde{y}},{\tilde{q}}\right) \nonumber \\{} & {} =\;\textrm{e}^{\displaystyle \textrm{i}\,\left( {q^\prime }^2-q^2\right) \,D_{\textrm{q}}\,t}\;\;\frac{2\,d\,\ell }{\pi \,L}\; \nonumber \\{} & {} \quad \times \underbrace{ \int \limits _{-\infty }^{\infty }\,\textrm{d}{{\tilde{q}}}\; \textrm{e}^{\displaystyle -2\,\ell ^2\,{\tilde{q}}^2-d^2\,\left[ \left( {q^\prime }-{\tilde{q}}\right) ^2+\left( q-{\tilde{q}}\right) ^2\right] } }_{\displaystyle \sqrt{\frac{\pi }{2\,\left( \ell ^2+d^2\right) }}\; \textrm{e}^{\displaystyle -\frac{\ell ^2 d^2}{\ell ^2+d^2}\,\left( {q^\prime }^2+q^2\right) }\; \textrm{e}^{\displaystyle -\frac{d^4}{2\,\left( \ell ^2+d^2\right) }\,} } \nonumber \\[5mm]{} & {} \quad \left( {q^\prime }-q\right) ^2 \times \underbrace{ \int \limits _{-L/2}^{L/2}\,\textrm{d}{{\tilde{y}}}\;\textrm{e}^{\displaystyle \textrm{i}\,\left( {q^\prime }-q\right) \,{\tilde{y}}} }_{\displaystyle \frac{2\,\sin \left( \left[ {q^\prime }-q\right] \,L/2\right) }{{q^\prime }-q} } \nonumber \\[5mm]{} & {} =\;\textrm{e}^{\displaystyle \textrm{i}\,\left( {q^\prime }^2-q^2\right) \,D_{\textrm{q}}\,t}\;\sqrt{\frac{2}{\pi }}\;s\; \; \textrm{e}^{\displaystyle -s^2\,\left( {q^\prime }^2+q^2\right) }\; \nonumber \\{} & {} \quad \times \; \textrm{e}^{\displaystyle -\frac{d^2}{2\ell ^2}\,s^2\;\left( {q^\prime }-q\right) ^2} \; \frac{\sin \left( \left[ {q^\prime }-q\right] \,L/2\right) }{[{q^\prime }-q]\,L/2}, \end{aligned}$$
(30)

where \(s\equiv \ell \,d\,/\,\sqrt{\ell ^2+d^2}\).

The diagonal element \(\left\langle {\rho _{\theta }}(t;q,q)\right\rangle _{\theta }=\sqrt{2/\pi }\;s\; \textrm{e}^{\displaystyle -2 s^2 q^2}\) has the form of a Boltzmann distribution. Indeed, by setting \(s = \lambda _{\textrm{th}}/ (2\sqrt{2\pi })\), where \(\lambda _{\textrm{th}}\) is the thermal de Broglie wave length of the particle, these diagonal elements yield the Boltzmann distribution for the population of eigenstates [2].

Strictly, the density matrix pertaining to state \({\psi _{\theta }}\) becomes diagonal only in the limit \(L\rightarrow \infty\), i.e. when the Gaussian wave packets sample the entire position space of the particle.

Appendix 2. Matrix elements of \({\hat{x}}\)

The matrix element of the position operator between two time dependent Gaussian wave packets is given by

$$\begin{aligned}{} & {} x_{}^{\mathrm{(G)}}\left( t;{y^\prime },{q^\prime },y,q\right) \equiv \langle {\psi _{}^{\mathrm{(G)}}\left( t;{y^\prime },{q^\prime }\right) }|\,\hat{x}\,|{\psi _{}^{\mathrm{(G)}}(t;y,q)}\rangle \nonumber \\{} & {} \quad = \frac{1}{\sqrt{2\pi }\,d^{}(t)}\,\int \limits _{-\infty }^{\infty }\,\textrm{d}{x}\,x\, \textrm{e}^{\displaystyle -\frac{\left( x\,-\,{y^\prime }(t)\right) ^2+\left( x\,-\,y(t)\right) ^2}{4\,d^{2}(t)}} \nonumber \\{} & {} \qquad \times \textrm{e}^{\displaystyle \textrm{i}\, \frac{\left( x\,-\,y(t)\right) ^2-\left( x\,-\,{y^\prime }(t)\right) ^2}{4\,d^{2}(t)}\,\frac{D_{\textrm{q}}\,t}{d^2} }\nonumber \\{} & {} \qquad \times \textrm{e}^{\displaystyle \textrm{i}\,\left( q\,\left( x\,-\,D_{\textrm{q}}\,t\,q\right) -{q^\prime }\,\left( x\,-\,D_{\textrm{q}}\,t\,{q^\prime }\right) \right) } \end{aligned}$$
(31)

with \({y^\prime }(t)\equiv {y^\prime }(t,{q^\prime }) = {y^\prime }+ 2 D_{\textrm{q}}{q^\prime }t\) and \(y(t)\equiv y(t,q) = y + 2 D_{\textrm{q}}q t\). Let

$$\begin{aligned} u= & {} \frac{{q^\prime }+q}{\sqrt{2}} \end{aligned}$$
(32)
$$\begin{aligned} v= & {} \frac{{q^\prime }-q}{\sqrt{2}} \end{aligned}$$
(33)
$$\begin{aligned} s(t)= & {} \frac{{y^\prime }(t)+y(t)}{\sqrt{2}} = s(0) + 2\,u\,D_{\textrm{q}}\,t \end{aligned}$$
(34)
$$\begin{aligned} r(t)= & {} \frac{{y^\prime }(t)-y(t)}{\sqrt{2}} = r(0) + 2\,v\,D_{\textrm{q}}\,t \end{aligned}$$
(35)

Then

$$\begin{aligned}{} & {} \left( x\,-\,{y^\prime }(t)\right) ^2+\left( x\,-\,y(t)\right) ^2\nonumber \\{} & {} \quad = 2 x^2 - 2 x \left( {y^\prime }(t)+y(t)\right) + {y^\prime }^2(t)+y^2(t) \nonumber \\{} & {} \quad = 2 x^2 - 2\sqrt{2} x s(t) + s^2(t) + r^2(t) \nonumber \\{} & {} \quad = 2\,\left( x-\frac{s(t)}{\sqrt{2}}\right) ^2 + r^2(t) \end{aligned}$$
(36)
$$\begin{aligned}{} & {} \left( x\,-\,y(t)\right) ^2-\left( x\,-\,{y^\prime }(t)\right) ^2\nonumber \\{} & {} \quad = - 2 x \left( y(t)-{y^\prime }(t)\right) + y^2(t)-{y^\prime }^2(t) \nonumber \\{} & {} \quad = 2\sqrt{2}\,x\,r(t) - 2\,s(t)\,r(t) \nonumber \\{} & {} \quad = 2\sqrt{2}\,r(t)\,\left( x-\frac{s(t)}{\sqrt{2}}\right) \end{aligned}$$
(37)

Given that

$$\begin{aligned}{} & {} q\,\left( x\,-\,D_{\textrm{q}}\,t\,q\right) -{q^\prime }\,\left( x\,-\,D_{\textrm{q}}\,t\,{q^\prime }\right) \nonumber \\{} & {} \quad = -\left( {q^\prime }-q\right) \;x +\left( {q^\prime }^2-q^2\right) \;D_{\textrm{q}}\,t \nonumber \\{} & {} \quad = -\sqrt{2}\,v\,x + 2\,v\,u\,D_{\textrm{q}}\,t \nonumber \\{} & {} \quad = -\sqrt{2}\,v\,\left( x - \sqrt{2}\,u\,D_{\textrm{q}}\,t\right) \nonumber \\{} & {} \quad = -\sqrt{2}\,v\,\left( x - \frac{s(t)}{\sqrt{2}} + \underbrace{ \frac{s(t)}{\sqrt{2}} - \sqrt{2}\,u\,D_{\textrm{q}}\,t }_{\displaystyle s(0)/\sqrt{2}} \right) \nonumber \\{} & {} \quad = -\sqrt{2}\,v\,\left( x - \frac{s(t)}{\sqrt{2}}\right) - v\,s(0) \end{aligned}$$
(38)

the matrix element becomes, after substitution \(x^{\prime }=x-s(t)/\sqrt{2}\),

$$\begin{aligned}{} & {} x_{}^{\mathrm{(G)}}(t;{y^\prime },{q^\prime },y,q) = \frac{1}{\sqrt{2\pi }\,d^{}(t)}\; \textrm{e}^{\displaystyle -\frac{r^2(t)}{4d^{2}(t)} -\textrm{i}\left( v\,s(0)\right) } \; \nonumber \\{} & {} \qquad \times \; \int \limits _{-\infty }^{\infty }\,\textrm{d}{x^{\prime }}\,\left( x^{\prime }+\frac{s(t)}{\sqrt{2}}\right) \, \textrm{e}^{\displaystyle -\frac{{{x^{\prime }}^{2}}}{2\,d^{2}(t)} +\textrm{i}\,\left( \frac{r(t)}{\sqrt{2}\,d^{2}(t)} \,\frac{D_{\textrm{q}}\,t}{d^2} -\sqrt{2}\,v \right) \,x^{\prime }} \nonumber \\{} & {} \quad = \frac{1}{\sqrt{2\pi }\,d^{}(t)}\; \textrm{e}^{\displaystyle -\frac{r^2(t)}{4d^{2}(t)} -\textrm{i}\left( v\,s(0)\right) } \, \times \, \left\{ I_1\left( t\right) \;\frac{s(t)}{\sqrt{2}} + I_2\left( t\right) \right\} \nonumber \\ \end{aligned}$$
(39)

where

$$\begin{aligned} I_1\left( t\right) = \int \limits _{-\infty }^{\infty }\,\textrm{d}{x}\, \textrm{e}^{\displaystyle -b\,x^2 +\textrm{i}\,a\,x }= & {} \sqrt{\frac{\pi }{b}}\,\textrm{e}^{\displaystyle -\frac{a^2}{4\,b}} \end{aligned}$$
(40)
$$\begin{aligned} I_2\left( t\right) = \int \limits _{-\infty }^{\infty }\,\textrm{d}{x}\,x\, \textrm{e}^{\displaystyle -b\,x^2 +\textrm{i}\,a\,x }= & {} \textrm{i}\frac{a}{2\,b}\,\sqrt{\frac{\pi }{b}}\,\textrm{e}^{\displaystyle -\frac{a^2}{4\,b}} \end{aligned}$$
(41)

with

$$\begin{aligned} a \left( = a(t)\right)= & {} \frac{r(t)}{\sqrt{2}\,d^{2}(t)} \,\frac{D_{\textrm{q}}\,t}{d^2} -\sqrt{2}\,v \end{aligned}$$
(42)
$$\begin{aligned} b \big (= b(t)\big )= & {} \frac{1}{2d^{2}(t)} \end{aligned}$$
(43)

To simplify this equation, consider

$$\begin{aligned} \frac{r^2(t)}{4d^{2}(t)} + \frac{a^2}{4\,b}= & {} \frac{r^2(t)}{4d^{2}(t)} + \frac{d^{2}(t)}{2}\, \left( \frac{r(t)}{\sqrt{2}\,d^{2}(t)} \,\frac{D_{\textrm{q}}\,t}{d^2} -\sqrt{2}\,v \right) ^2 \nonumber \\= & {} r^2(t)\, \underbrace{ \frac{d^4+D_{\textrm{q}}^2t^2}{4\,d^4\,d^{2}(t)} }_{\displaystyle 1/(4\,d^2)} \,+\, d^{2}(t)\,v^2 \,-\, \frac{v\,r(t)\,D_{\textrm{q}}\,t}{d^2} \nonumber \\= & {} \frac{1}{4\,d^2} \, \left( r^2(t) +4\,v\, \left( d^2\,d^{2}(t)\,v - r(t)\,D_{\textrm{q}}\,t\right) \right) \nonumber \\= & {} \frac{1}{4\,d^2} \, \big ( r^2(0) + 4\,r(0)\,v\,D_{\textrm{q}}\,t + 4\,v^2\,\left( D_{\textrm{q}}\,t\right) ^2 \nonumber \\{} & {} \quad + 4\,d^4\,v^2 + 4\,\left( D_{\textrm{q}}\,t\right) ^2\,v^2 - 4\,v\,r(0)\,D_{\textrm{q}}\,t\nonumber \\{} & {} \quad - 8\,v^2\,\left( D_{\textrm{q}}\,t\right) ^2 \big ) \nonumber \\= & {} d^2\,v^2 + \frac{r^2(0)}{4\,d^2} \end{aligned}$$
(44)
$$\begin{aligned} \frac{a}{2\,b}= & {} \frac{r(0)\,D_{\textrm{q}}\,t}{\sqrt{2}\,d^2}-d^2\,\sqrt{2}\,v \end{aligned}$$
(45)

One then obtains

$$\begin{aligned}{} & {} x_{}^{{\mathrm{(G)}}}\left( t;{y^\prime },{q^\prime },y,q\right) =\textrm{e}^{\displaystyle - d^2\,v^2 - \frac{r^2(0)}{4\,d^2} -\textrm{i}\,v\,r(0) } \\{} & {}\qquad \times \;\left\{ \frac{s(0)}{\sqrt{2}}+\sqrt{2}\,u\,D_{{\textrm{q}}}\,t +\textrm{i}\,\frac{r(0)}{\sqrt{2}}\,\frac{D_{{\textrm{q}}}\,t}{d^2} -\textrm{i}\,d^2\,\sqrt{2}\,v \right\} \\{} & {} \quad =\textrm{e}^{\displaystyle - d^2\,\frac{\left( {q^\prime }-q\right) ^2}{2} - \frac{\left( {y^\prime }-y\right) ^2}{8\,d^2} -\textrm{i}\left( \frac{\left( {q^\prime }-q\right) \,\left( {y^\prime }+y\right) }{2} \right) } \\{} & {} \qquad \times \;\left\{ \frac{{y^\prime }+y}{2}+\left( {q^\prime }+q\right) \,D_{\textrm{q}}\,t\right. \\{} & {} \qquad\quad\; \left. +\,\textrm{i}\,\frac{\left( {y^\prime }-y\right) }{2}\,\frac{D_{{\textrm{q}}}\,t}{d^2} - \textrm{i}\,d^2\,\left( {q^\prime }-q\right) \right\} \\ \end{aligned}$$
(46)

We will focus on differences

$$\begin{aligned}{} & \Delta x_{}^{\mathrm{(G)}}\left( t;{y^\prime },{q^\prime },y,q\right) \nonumber\\{} &\quad\equiv x_{}^{\mathrm{(G)}}\left( t;{y^\prime },{q^\prime },y,q\right) -x_{}^{\mathrm{(G)}}\left( 0;{y^\prime },{q^\prime },y,q\right) \nonumber \\[3mm]{} & {} \quad= \textrm{e}^{\displaystyle - d^2\,\frac{\left( {q^\prime }-q\right) ^2}{2} - \frac{\left( {y^\prime }-y\right) ^2}{8\,d^2} -\textrm{i}\left( \frac{\left( {q^\prime }-q\right) \,\left( {y^\prime }+y\right) }{2} \right) } \nonumber \\{} & {} \qquad \times \;\left[ \left( {q^\prime }+q\right) +\textrm{i}\,\frac{\left( {y^\prime }-y\right) }{2\,d^2} \right] \,\,D_{\textrm{q}}\,t. \end{aligned}$$
(47)

Diagonal elements are simplified to

$$\begin{aligned} \Delta x_{}^{\mathrm{(G)}}\left( t;y,q,y,q\right)= & {} 2\,q\,D_{\textrm{q}}\,t. \end{aligned}$$
(48)

Note that, in the limit \(d\rightarrow \infty\), the differential matrix elements become diagonal in q and independent of both y and \({y^\prime }\):

$$\begin{aligned} \lim \limits _{d\rightarrow \infty } \Delta x_{}^{\mathrm{(G)}}\left( t;{y^\prime },{q^\prime },y,q\right)= & {} \left\{ \begin{array}{lr} 0&\quad {}{q^\prime }\ne q\\ 2\,q \,D_{\textrm{q}}\,t&\quad {}{q^\prime }=q. \end{array} \right. \end{aligned}$$
(49)

Appendix 3. Route I calculation of the MSD

Following the definition in Eq. (1), the quantum mechanical MSD of the particle is

$$\begin{aligned} \delta _x^2(t)= & {} \int \limits _{-L/2}^{L/2}\;\textrm{d}{{y^{\prime \prime \prime }}}\; \int \limits _{-L/2}^{L/2}\;\textrm{d}{{y^{\prime \prime }}}\; \int \limits _{-L/2}^{L/2}\;\textrm{d}{{y^\prime }}\; \int \limits _{-L/2}^{L/2}\;\textrm{d}{y}\;\nonumber \\{} & {} \quad \int \limits _{-\infty }^{\infty }\;\textrm{d}{{q^{\prime \prime \prime }}}\; \int \limits _{-\infty }^{\infty }\;\textrm{d}{{q^{\prime \prime }}}\; \int \limits _{-\infty }^{\infty }\;\textrm{d}{{q^\prime }}\; \int \limits _{-\infty }^{\infty }\;\textrm{d}{q}\; \nonumber \\{} & {} \; \left\langle \gamma ^*\left( {y^{\prime \prime \prime }},{q^{\prime \prime \prime }};\theta \right) \,\gamma \left( {y^\prime },{q^\prime };\theta \right) \,\gamma ^* \left( {y^{\prime \prime }},{q^{\prime \prime }};\theta \right) \,\gamma \left( y,q;\theta \right) \right\rangle _{\theta } \nonumber \\{} & {} \;\;\times \; \Delta x_{}^{\mathrm{(G)}}\left( t;{y^{\prime \prime }},{q^{\prime \prime }},y,q\right) \; \Delta x_{}^{\mathrm{(G)}}\left( t;{y^{\prime \prime \prime }},{q^{\prime \prime \prime }},{y^\prime },{q^\prime }\right) . \end{aligned}$$
(50)

Here

$$\begin{aligned}{} & {} \left\langle \gamma ^*\left( {y^{\prime \prime \prime }},{q^{\prime \prime \prime }};\theta \right) \,\gamma \left( {y^\prime },{q^\prime };\theta \right) \,\gamma ^* \left( {y^{\prime \prime }},{q^{\prime \prime }};\theta \right) \,\gamma (y,q;\theta )\right\rangle _{\theta } \nonumber \\{} & {} \quad = \frac{\displaystyle 2\,\ell ^2}{\displaystyle \pi \,L^2} \, \textrm{e}^{\displaystyle -\ell ^2\, \left( q^2 + {q^\prime }^2 + {q^{\prime \prime }}^2 + {q^{\prime \prime \prime }}^2 \right) }\; \;\nonumber \\{} & {} \quad \left\langle \textrm{e}^{\displaystyle \textrm{i}\,\left( \theta (y,q)-\theta ({y^{\prime \prime }},{q^{\prime \prime }})+\theta ({y^\prime },{q^\prime })-\theta ({y^{\prime \prime \prime }},{q^{\prime \prime \prime }})\right) }\right\rangle _{\theta }. \end{aligned}$$
(51)

The averaged random phases yield (see Eq. (17))

$$\begin{aligned}{} & {} \left\langle \textrm{e}^{\displaystyle \textrm{i}\,\left( \theta (y,q)-\theta \left( {y^{\prime \prime }},{q^{\prime \prime }}\right) +\theta \left( {y^\prime },{q^\prime }\right) -\theta \left( {y^{\prime \prime \prime }},{q^{\prime \prime \prime }}\right) \right) }\right\rangle _{\theta } \nonumber \\{} & \quad = \delta \left( {y^{\prime \prime \prime }}-{y^{\prime }}\right) \delta \left( {q^{\prime \prime \prime }}-{q^{\prime }}\right) \delta \left( y^{\prime\prime }-y\right) \delta \left( q^{\prime\prime }-q\right) \nonumber \\{} & {} \qquad + \delta \left( {y^{\prime \prime \prime }}-y\right)\delta \left( {q^{\prime \prime \prime }}-q\right) \delta \left( {y^{\prime \prime }}-{y^\prime }\right) \delta \left( {q^{\prime \prime }}-{q^\prime }\right) . \end{aligned}$$
(52)

Hence

$$\begin{aligned} \delta _x^2(t)= & {} \left( D_{\textrm{q}}\,t\right) ^2 \; \frac{2\,\ell ^2}{\pi \,L^2} \; \times \left( C_1\;+\;C_2\right) \end{aligned}$$
(53)

where

$$\begin{aligned} C_1= & {} \left( 2\; \int \limits _{-L/2}^{L/2}\;\textrm{d}{y}\; \int \limits _{-\infty }^{\infty }\;\textrm{d}{q}\; q\,\textrm{e}^{\displaystyle -2\,\ell ^2\,q^2} \right) ^2 \;=\;0 \end{aligned}$$
(54)
$$\begin{aligned} C_2= & {} \int \limits _{-L/2}^{L/2}\;\textrm{d}{{y^\prime }}\; \int \limits _{-L/2}^{L/2}\;\textrm{d}{y}\; \int \limits _{-\infty }^{\infty }\;\textrm{d}{{q^\prime }}\; \int \limits _{-\infty }^{\infty }\;\textrm{d}{q}\; \nonumber \\{} & {} \qquad \textrm{e}^{\displaystyle -2\ell ^2\left( q^2+{q^\prime }^2\right) -d^2\left( {q^\prime }-q\right) ^2-\left( {y^\prime }-y\right) ^2/(4d^2)} \;\nonumber \\{} & {} \qquad \left( \left( q+{q^\prime }\right) ^2+\frac{\left( y-{y^\prime }\right) ^2}{4\,d^4}\right) \nonumber \\= & {} 4d^2\; \int \limits _{-L/4d}^{L/4d}\textrm{d}{{\tilde{\tilde{y}}}}\; \int \limits _{-L/4d}^{L/4d}\textrm{d}{{\tilde{y}}}\; \int \limits _{-\infty }^{\infty }\textrm{d}{u}\;\nonumber \\{} & {} \qquad \int \limits _{-\infty }^{\infty }\textrm{d}{v}\; \textrm{e}^{\displaystyle -2\ell ^2\left( u^2+v^2\right) -2d^2v^2-\left( {\tilde{\tilde{y}}}-{\tilde{y}}\right) ^2} \nonumber \\{} & {} \qquad \times \; \left( 2u^2+\frac{\left( {\tilde{y}}-{\tilde{\tilde{y}}}\right) ^2}{d^2}\right) \nonumber \\= & {} 4d^2\; \int \limits _{-L/4d}^{L/4d}\textrm{d}{{\tilde{\tilde{y}}}}\; \int \limits _{-L/4d}^{L/4d}\textrm{d}{{\tilde{y}}}\; \textrm{e}^{\displaystyle -\left( {\tilde{\tilde{y}}}-{\tilde{y}}\right) ^2} \; \underbrace{ \int \limits _{-\infty }^{\infty }\textrm{d}{v}\; \textrm{e}^{\displaystyle -2\left( \ell ^2+d^2\right) v^2} }_{\displaystyle =\sqrt{\frac{\pi }{2}}\;\frac{1}{\sqrt{\ell ^2+d^2}}\; } \nonumber \\{} & {} \qquad \times \left( 2\, \underbrace{ \int \limits _{-\infty }^{\infty }\textrm{d}{u}\;\textrm{e}^{\displaystyle -2\ell ^2u^2}\,u^2 }_{\displaystyle = \frac{\sqrt{2\pi }}{8\,\ell ^3} } \; + \; \frac{\left( {\tilde{\tilde{y}}}-{\tilde{y}}\right) ^2}{d^2} \; \underbrace{ \int \limits _{-\infty }^{\infty }\textrm{d}{u}\;\textrm{e}^{\displaystyle -2\ell ^2u^2} }_{\displaystyle = \frac{\sqrt{\pi }}{\sqrt{2}\,\ell } } \right) \nonumber \\= & {} \pi \; \frac{d^2}{\ell \sqrt{\ell ^2+d^2}}\; \left( \frac{1}{\ell ^2}\;J_1\left( \frac{L}{4d}\right) \; + \; \frac{2}{d^2}\;J_2\left( \frac{L}{4d}\right) \right) \end{aligned}$$
(55)

The double integrals in the last equation are given by

$$\begin{aligned} J_1(x)= & {} \int \limits _{-x}^{x}\textrm{d}{{\tilde{\tilde{y}}}}\; \int \limits _{-x}^{x}\textrm{d}{{\tilde{y}}}\; \textrm{e}^{\displaystyle -\left( {\tilde{\tilde{y}}}-{\tilde{y}}\right) ^2} \nonumber \\{} & {} = 2\,\sqrt{\pi }\,\textrm{erf}\left( 2 x\right) \,x\,-\,1\,+\,\textrm{e}^{\displaystyle -4 x^2} \end{aligned}$$
(56)
$$\begin{aligned} J_2(x)= & {} \int \limits _{-x}^{x}\textrm{d}{{\tilde{\tilde{y}}}}\; \int \limits _{-x}^{x}\textrm{d}{{\tilde{y}}}\; \textrm{e}^{\displaystyle -\left( {\tilde{\tilde{y}}}-{\tilde{y}}\right) ^2}\,\left( {\tilde{\tilde{y}}}-{\tilde{y}}\right) ^2 \nonumber \\= & {} \sqrt{\pi }\,\textrm{erf}\left( 2 x\right) \,x\,-\,1\,+\,\textrm{e}^{\displaystyle -4 x^2} \end{aligned}$$
(57)

where \(\textrm{erf}(x)\) is the error function \(\textrm{erf}(x)=1/\sqrt{\pi }\,\int \nolimits _{-x}^x\,\textrm{e}^{\displaystyle -y^2}\textrm{d}{y}\)

\(\equiv 2/\sqrt{\pi }\,\int \nolimits _{-\infty }^x\,\textrm{e}^{\displaystyle -y^2}\textrm{d}{y} -1\), so that

$$\begin{aligned} \delta _x^2(t)= & {} \left( D_{\textrm{q}}\,t\right) ^2 \; 2\,\frac{d^2\ell }{L^2\,\sqrt{\ell ^2+d^2}} \; \left( \frac{1}{\ell ^2}\,J_1\left( \frac{L}{4d}\right) \;\right. \nonumber \\{} & {} \left. +\;\frac{2}{d^2}\,J_2\left( \frac{L}{4d}\right) \right) \nonumber \\= & {} F(d,L)\;\;v_{\textrm{th}}^2\,t^2 \end{aligned}$$
(58)

In the last equation use was made of Eq. (16) and of the identity \(D_{\textrm{q}}^2=\lambda _{\textrm{th}}^2\,v_{\textrm{th}}^2/(8\pi )\). The function F(dL) is given by

$$\begin{aligned} F(d,L)= & {} \frac{1}{4\pi \sqrt{8\pi }}\;\frac{\lambda _{\textrm{th}}}{L}\;\Big\{ 4\pi \sqrt{\pi }\;\textrm{erf}\left( \frac{L}{2d}\right) \nonumber \\{} & {} \quad+\;\left( 8\pi \,\frac{d}{L}+\frac{\lambda _{\textrm{th}}^2}{d\,L}\right) \,\left( \textrm{e}^{\displaystyle -\frac{L^2}{4\,d^2}}-1\right)\Big\} \nonumber \\ \end{aligned}$$
(59)

Appendix 4. Route II calculation of the MSD

Let \(\bar{n}= (n_x,n_q)\) be a set of indices such as used in Eq. (18). From Eq. (9) we may set \(f_{k,\bar{n}}\equiv f_k(x_{n_x},q_{n_q})\) and then write

$$\begin{aligned} {x_{\theta }}(t)= & {} \sum \limits _{k\,j}\,\sum \limits _{\bar{n}\,\bar{m}}\; g_{\bar{n}}(\theta )\,g_{\bar{m}}^*(\theta )\, f_{k,\bar{n}}\,f_{j,\bar{m}}^*\; \textrm{e}^{\displaystyle -\textrm{i}\,\left( q_k^2-q_j^2\right) \,D_{\textrm{q}}\,t}\;x_{kj} \nonumber \\= & {} \sum \limits _{k\,j}\; \textrm{e}^{\displaystyle -\textrm{i}\,\left( q_k^2-q_j^2\right) \,D_{\textrm{q}}\,t}\;x_{kj}\; \underbrace{ \sum \limits _{\bar{n}\,\bar{m}}\; g_{\bar{n}}(\theta )\,g_{\bar{m}}^*(\theta )\, f_{k,\bar{n}}\,f_{j,\bar{m}}^*\ }_{\displaystyle \equiv a_{kj}(\theta )}\nonumber \\ \end{aligned}$$
(60)

where all indices run from \(-N\) to N and \(\sum \nolimits _{\bar{n}}\) stands for \(\sum \nolimits _{n_x\,n_q}\).

Following Eqs. (9) and (18), the expansion matrix elements can be written as

$$\begin{aligned}{} & {} a_{kj}(\theta ) = \sum \limits _{\bar{n}\,\bar{m}}\; g_{\bar{n}}(\theta )\,g_{\bar{m}}^*(\theta )\, f_{k,\bar{n}}\,f_{j,\bar{m}}^*\ \nonumber \\{} & {} \quad = \frac{4\pi \,d\,\ell }{N\,L^2}\; \sum \limits _{\bar{n}\,\bar{m}}\; \textrm{e}^{\displaystyle \textrm{i}\,\left( \theta _{\bar{n}}-\theta _{\bar{m}}\right) }\nonumber \\{} & {} \qquad \times\textrm{e}^{\displaystyle -\ell ^2\,\left( q_{n_q}^2+q_{m_q}^2\right) }\; \textrm{e}^{\displaystyle -d^2\,\left[ \left( q_k+q_{n_q}\right) ^2+\left( q_j+q_{m_q}\right) ^2\right] }\; \nonumber \\{} & {} \qquad \times \textrm{e}^{\displaystyle \textrm{i}\,\left[ x_{n_x}\,\left( q_k+q_{n_q}\right) -x_{m_x}\,\left( q_j+q_{m_q}\right) \right] }\;\nonumber \\{} & {} \end{aligned}$$
(61)

where \(\theta _{\bar{n}}=\theta (x_{n_x},q_{n_q})\).

Following the definition in Eq. (1), the quantum mechanical MSD of the particle is then

$$\begin{aligned} \delta _x^2(t)= & {} \sum \limits _{k} \sum \limits _{j} \sum \limits _{k^\prime } \sum \limits _{j^\prime } \; x_{kj}\,x_{k^\prime j^\prime }\; \left\langle a_{kj}(\theta )\;a_{k^\prime j^\prime }(\theta )\right\rangle _{\theta } \nonumber \\{} & {} \quad \times \left( \textrm{e}^{\displaystyle -\textrm{i}\,\left( q_k^2-q_j^2\right) \,D_{\textrm{q}}\,t}-1\right) \;\nonumber \\{} & {} \quad \times \left( \textrm{e}^{\displaystyle -\textrm{i}\,\left( q_{k^\prime }^2-q_{j^\prime }^2\right) \,D_{\textrm{q}}\,t}-1\right) \; \end{aligned}$$
(62)

Here

$$\begin{aligned}{} & {} \left\langle a_{kj}(\theta )\;a_{k^\prime j^\prime }(\theta )\right\rangle _{\theta } = \left( \frac{4\pi \,d\,\ell }{N\,L^2}\right) ^2\;\nonumber \\{} & {} \quad \sum \limits _{\bar{n}} \sum \limits _{\bar{m}} \sum \limits _{\bar{n}^\prime } \sum \limits _{\bar{m}^\prime } \; \textrm{e}^{\displaystyle -\ell ^2\,\left( q_{n_q}^2+q_{n^\prime _q}^2+q_{m_q}^2+q_{m^\prime _q}^2\right) } \nonumber \\{} & {} \quad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_k+q_{n_q}\right) ^2+\textrm{i}\,x_{n_x}\,\left( q_k+q_{n_q}\right) } \nonumber \\{} & {} \quad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_j+q_{m_q}\right) ^2-\textrm{i}\,x_{m_x}\,\left( q_j+q_{m_q}\right) } \nonumber \\{} & {} \quad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_{k^\prime }+q_{n^\prime _q}\right) ^2+\textrm{i}\,x_{n^\prime _x}\,\left( q_{k^\prime }+q_{n^\prime _q}\right) } \nonumber \\{} & {} \quad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_{j^\prime }+q_{m^\prime _q}\right) ^2-\textrm{i}\,x_{m^\prime _x}\,\left( q_{j^\prime }+q_{m^\prime _q}\right) } \nonumber \\{} & {} \quad \times \, \left\langle \textrm{e}^{\displaystyle \textrm{i}\,\left( \theta _{\bar{n}}-\theta _{\bar{m}}+\theta _{\bar{n}^\prime }-\theta _{\bar{m}^\prime }\right) }\right\rangle _{\theta } \end{aligned}$$
(63)

The averaged quantities \(\left\langle \textrm{e}^{\displaystyle \textrm{i}\,\left( \theta _{\bar{n}}-\theta _{\bar{m}}+\theta _{\bar{n}^\prime }-\theta _{\bar{m}^\prime }\right) }\right\rangle _{\theta }\) yield zero, unless \(\bar{n}=\bar{m}\) and \(\bar{n}^\prime =\bar{m}^\prime\), or \(\bar{n}=\bar{m}^\prime\) and \(\bar{m}=\bar{n}^\prime\), when they take the value one (see Eq. (19)).

Hence

$$\begin{aligned} \left\langle a_{kj}(\theta )\;a_{k^\prime j^\prime }(\theta )\right\rangle _{\theta }= & {} A^{(1)}_{k j k^\prime j^\prime } + A^{(2)}_{k j k^\prime j^\prime } \end{aligned}$$
(64)

where

$$\begin{aligned} A^{(1)}_{k j k^\prime j^\prime }= & {} \left( \frac{4\pi \,d\,\ell }{N\,L^2}\right) ^2\; \sum \limits _{\bar{n}} \sum \limits _{\bar{n}^\prime } \; \textrm{e}^{\displaystyle -2\ell ^2\,\left( q_{n_q}^2+q_{n^\prime _q}^2\right) } \nonumber \\{} & {} \quad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_k+q_{n_q}\right) ^2+\textrm{i}\,x_{n_x}\,\left( q_k+q_{n_q}\right) } \nonumber \\{} & {} \quad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_j+q_{n_q}\right) ^2-\textrm{i}\,x_{n_x}\,\left( q_j+q_{n_q}\right) } \nonumber \\{} & {} \quad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_{k^\prime }+q_{n^\prime _q}\right) ^2+\textrm{i}\,x_{n^\prime _x}\,\left( q_{k^\prime }+q_{n^\prime _q}\right) } \nonumber \\{} & {} \quad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_{j^\prime }+q_{n^\prime _q}\right) ^2-\textrm{i}\,x_{n^\prime _x}\,\left( q_{j^\prime }+q_{n^\prime _q}\right) } \end{aligned}$$
(65)

We shall consider the limit \(N\rightarrow \infty\). In this limit [8Footnote 4

$$\begin{aligned} \sum _{n=-N}^N\;\textrm{e}^{\displaystyle \textrm{i}\,x_n\,(q_k-q_j)}\approx & {} 2N\,\delta _{jk} \end{aligned}$$
(66)

Therefore we can write, in this limit,

$$\begin{aligned} A^{(1)}_{k j k^\prime j^\prime }\approx & {} \delta _{kj}\,\delta _{k^\prime j^\prime }\; \left( \frac{8\pi \,d\,\ell }{L^2}\right) ^2\; \sum \limits _{n_q} \sum \limits _{n^\prime _q} \; \textrm{e}^{\displaystyle -2\ell ^2\,\left( q_{n_q}^2+q_{n^\prime _q}^2\right) }\; \nonumber \\{} & {} \;\;\;\;\;\;\;\;\;\;\;\;\times \, \textrm{e}^{\displaystyle -2d^2\,\left[ \left( q_k+q_{n_q}\right) ^2+\left( q_{k^\prime }+q_{n^\prime _q}\right) ^2\right] } \end{aligned}$$
(67)

Because of the Kronecker-\(\delta\) factors, the contribution of these terms to the MSD in Eq. (62) is effectively nil.

Similarly, in the limit \(N\rightarrow \infty\),

$$\begin{aligned}{} & {} A^{(2)}_{k j k^\prime j^\prime } = \left( \frac{4\pi \,d\,\ell }{N\,L^2}\right) ^2\; \sum \limits _{\bar{n}} \sum \limits _{\bar{m}} \; \textrm{e}^{\displaystyle -2\ell ^2\,\left( q_{n_q}^2+q_{m_q}^2\right) } \nonumber \\{} & {} \qquad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_k+q_{n_q}\right) ^2+\textrm{i}\,x_{n_x}\,\left( q_k+q_{n_q}\right) } \nonumber \\{} & {} \qquad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_j+q_{m_q}\right) ^2-\textrm{i}\,x_{m_x}\,\left( q_j+q_{m_q}\right) } \nonumber \\{} & {} \qquad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_{k^\prime }+q_{m_q}\right) ^2+\textrm{i}\,x_{m_x}\,\left( q_{k^\prime }+q_{m_q}\right) } \nonumber \\{} & {} \qquad \times \, \textrm{e}^{\displaystyle -d^2\,\left( q_{j^\prime }+q_{n_q}\right) ^2-\textrm{i}\,x_{n_x}\,\left( q_{j^\prime }+q_{n_q}\right) } \nonumber \\{} & {} \quad \approx \delta _{kj^\prime }\,\delta _{j k^\prime }\; \left( \frac{8\pi \,d\,\ell }{L^2}\right) ^2\; \sum \limits _{n_q} \sum \limits _{m_q} \; \textrm{e}^{\displaystyle -2\ell ^2\,\left( q_{n_q}^2+q_{m_q}^2\right) }\; \nonumber \\{} & {} \qquad \times \, \textrm{e}^{\displaystyle -2d^2\,\left[ \left( q_k+q_{n_q}\right) ^2+\left( q_j+q_{m_q}\right) ^2\right] } \nonumber \\{} & {} \quad = \delta _{kj^\prime }\,\delta _{j k^\prime }\; \left( \frac{8\pi \,d\,\ell }{L^2}\right) ^2\; \left( \sum \limits _{n}\,\textrm{e}^{\displaystyle -2\ell ^2\,q_n^2-2d^2\,\left( q_k+q_n\right) ^2}\right) \nonumber \\{} & {} \qquad \times \, \; \left( \sum \limits _{n}\,\textrm{e}^{\displaystyle -2\ell ^2\,q_n^2-2d^2\,\left( q_j+q_n\right) ^2}\right) \nonumber \\{} & {} \quad \approx \delta _{kj^\prime }\,\delta _{jk^\prime }\; \underbrace{ \left( \frac{8\pi \,d\,\ell }{L^2}\right) ^2\;\left( \frac{L}{2}\right) ^2\; \frac{1}{2\pi \,\left( \ell ^2\!+\!d^2\right) }\,\textrm{e}^{\displaystyle -2\frac{\ell ^2d^2}{\ell ^2\!+\!d^2}\,\left( q_k^2\!+\!q_j^2\right) } }_{\displaystyle \frac{8\pi s^2}{L^2}\,\textrm{e}^{\displaystyle -2\,s^2\,\left( q_k^2+q_j^2\right) }\;\;\;\text{(see } \text{ Appendix } \text{1) }} \nonumber \\ \end{aligned}$$
(68)

where \(s=\ell d\,/\,\sqrt{\ell ^2+d^2}\equiv \lambda _{\textrm{th}}/\sqrt{8\pi }\) and the approximation in the last equation holds the better, the larger L (see Eq. (3.2) in Ref. [8]).

Hence

$$\begin{aligned} \delta _x^2(t)\approx & {} \frac{8\pi \,s^2}{L^2}\sum \limits _{k}\,\sum \limits _{j}\,|x_{kj}|^2 \, |\textrm{e}^{\displaystyle -\textrm{i}\,\left( q_k^2\!-\!q_j^2\right) \,D_{\textrm{q}}\,t}\!-\!1|^2 \;\textrm{e}^{\displaystyle -2\,s^2\, \left( q_k^2\!+\!q_j^2 \right) } \nonumber \\ \end{aligned}$$
(69)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindech, O., Marquardt, R. Mean square displacement of a free quantum particle on the basis of thermal Gaussian wave packets. Eur. Phys. J. Spec. Top. 232, 1885–1895 (2023). https://doi.org/10.1140/epjs/s11734-023-00920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00920-7

Navigation