Skip to main content
Log in

Chaotic dynamics of fractional difference magnetic levitation model with application to image encryption

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Magnetic levitation or Maglev technology has become exciting technology with the aim of developing advanced transportation at high speed. The article aims at investigating the nonlinear nature of the magnetic levitation model using Caputo fractional difference operator with variable order. In the context of non-linear systems, the evolution of the chaotic and complex dynamics are addressed with bifurcation diagrams and largest Lyapunov exponents for constant fractional order and time varying order. Transition of the state variables in the form of phase plane and time varying plots are presented for better understanding. Approximate entropy analysis guides our knowledge on the randomness of the chaotic time series of the magnetic levitation model. Synchronization of the driven and response systems with nonlinear control function is established. The application of the model’s chaotic nature in the process of image encryption is presented. Histogram analysis and correlation co-efficient are discussed together with the information entropy of the encrypted image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No data sets are generated or analyzed during the current study.

References

  1. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)

    MathSciNet  MATH  ADS  Google Scholar 

  2. M. Santhanam, S. Paul, J.B. Kannan, Quantum kicked rotor and its variants: chaos, localization and beyond. Phys. Rep. 956, 1–87 (2022)

    MathSciNet  MATH  ADS  Google Scholar 

  3. A. Karimov, V. Rybin, A. Dautov, T. Karimov, Y. Bobrova, D. Butusov, Mechanical chaotic duffing system with magnetic springs. Inventions 8(1), 19 (2023)

    Google Scholar 

  4. L. Ren, J. Mou, S. Banerjee, Y. Zhang, A hyperchaotic map with a new discrete memristor model: design, dynamical analysis, implementation and application. Chaos Solitons Fractals 167, 113024 (2023)

    MathSciNet  Google Scholar 

  5. S. He, D. Zhan, H. Wang, K. Sun, Y. Peng, Discrete memristor and discrete memristive systems. Entropy 24(6), 786 (2022)

    MathSciNet  ADS  Google Scholar 

  6. S. He, S. Banerjee, K. Sun, Can derivative determine the dynamics of fractional-order chaotic system? Chaos Solitons Fractals 115, 14–22 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  7. S. He, H. Wang, K. Sun, Solutions and memory effect of fractional-order chaotic system: a review. Chin. Phys. B 31(6), 060501 (2022)

    MATH  ADS  Google Scholar 

  8. G. Zhu, C. Kong, J.V. Wang, J. Kang, G. Yang, Q. Wang, A fractional-order model of lithium-ion battery considering polarization in electrolyte and thermal effect. Electrochim. Acta 438, 141461 (2023)

    Google Scholar 

  9. S. Qureshi, A. Yusuf, A..A. Shaikh, M. Inc, D. Baleanu, Fractional modeling of blood ethanol concentration system with real data application. Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013143 (2019)

    MathSciNet  MATH  Google Scholar 

  10. F. Atici, P. Eloe, Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137(3), 981–989 (2009)

    MathSciNet  MATH  Google Scholar 

  11. I. Podlubny, Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359–386 (2000)

    MathSciNet  MATH  Google Scholar 

  12. G.A. Anastassiou, G.A. Anastassiou, About discrete fractional calculus with inequalities. Intell. Math. Comput. Anal. 575–585 (2011)

  13. C.S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference. Math. Inequal. Appl 19(2), 769–779 (2016)

    MathSciNet  MATH  Google Scholar 

  14. L.-L. Huang, G.-C. Wu, D. Baleanu, H.-Y. Wang, Discrete fractional calculus for interval-valued systems. Fuzzy Sets Syst. 404, 141–158 (2021)

    MathSciNet  MATH  Google Scholar 

  15. D. Vignesh, S. Banerjee, Dynamical analysis of a fractional discrete-time vocal system. Nonlinear Dyn. 111(5), 4501–4515 (2023)

    MATH  Google Scholar 

  16. J. Alzabut, A.G.M. Selvam, V. Dhakshinamoorthy, H. Mohammadi, S. Rezapour, On chaos of discrete time fractional order host-immune-tumor cells interaction model. J. Appl. Math. Comput. 1–26 (2022)

  17. G.E. Chatzarakis, A. George Maria Selvam, R. Janagaraj, D. Vignesh, Modelling series rlc circuit with discrete fractional operator. In: Advances in Electrical and Computer Technologies: Select Proceedings of ICAECT 2021, pp. 1019– 1032. Springer, New York ( 2022)

  18. S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1(4), 277–300 (1993)

    MathSciNet  MATH  Google Scholar 

  19. W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)

    ADS  Google Scholar 

  20. J.P. Neto, R.M. Coelho, D. Valério, S. Vinga, D. Sierociuk, W. Malesza, M. Macias, A. Dzieliński, Variable order differential models of bone remodelling. IFAC-PapersOnLine 50(1), 8066–8071 (2017)

    MATH  Google Scholar 

  21. B. Ghanbari, J. Gómez-Aguilar, Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives. Chaos Solitons Fractals 116, 114–120 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  22. A. Atangana, J.F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative. Boundary value problems 2013, 1–11 (2013)

    MathSciNet  MATH  Google Scholar 

  23. A. Akgül, D. Baleanu et al., On solutions of variable-order fractional differential equations. Int. J. Optim. Control Theor. Appl. (IJOCTA) 7(1), 112–116 (2017)

    MathSciNet  MATH  Google Scholar 

  24. H. Sun, A. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calcul. Appl. Anal. 22(1), 27–59 (2019)

    MathSciNet  MATH  Google Scholar 

  25. L.-L. Huang, J.H. Park, G.-C. Wu, Z.-W. Mo, Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 370, 112633 (2020)

    MathSciNet  MATH  Google Scholar 

  26. A. Hioual, A. Ouannas, T.-E. Oussaeif, G. Grassi, I.M. Batiha, S. Momani, On variable-order fractional discrete neural networks: solvability and stability. Fractal Fract. 6(2), 119 (2022)

    Google Scholar 

  27. P. Oziablo, D. Mozyrska, M. Wyrwas, Discrete-time fractional, variable-order pid controller for a plant with delay. Entropy 22(7), 771 (2020)

    MathSciNet  ADS  Google Scholar 

  28. B. Ramakrishnan, A. Ahmadi, F. Nazarimehr, H. Natiq, S. Jafari, I. Hussain, Oyster oscillator: a novel mega-stable nonlinear chaotic system. Eur. Phys. J. Spec. Top. 231(11), 2143–2151 (2022)

    Google Scholar 

  29. Z. Elhadj, J.C. Sprott, A minimal 2-d quadratic map with quasi-periodic route to chaos. Int. J. Bifurc. Chaos 18(05), 1567–1577 (2008)

    MathSciNet  MATH  Google Scholar 

  30. T. Gotthans, J.C. Sprott, J. Petrzela, Simple chaotic flow with circle and square equilibrium. Int. J. Bifurc. Chaos 26(08), 1650137 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Z. Faghani, F. Nazarimehr, S. Jafari, J.C. Sprott, A new category of three-dimensional chaotic flows with identical eigenvalues. Int. J. Bifurc. Chaos 30(02), 2050026 (2020)

    MathSciNet  MATH  Google Scholar 

  32. J.C. Sprott, S.J. Linz, Algebraically simple chaotic flows. Int. J. Chaos Theory Appl. 5(2), 1–20 (2000)

    Google Scholar 

  33. L. Chen, H. Yin, L. Yuan, J.T. Machado, R. Wu, Z. Alam, Double color image encryption based on fractional order discrete improved henon map and rubik’s cube transform. Signal Process. Image Commun. 97, 116363 (2021)

    Google Scholar 

  34. Z. Liu, T. Xia, Novel two dimensional fractional-order discrete chaotic map and its application to image encryption. Appl. Comput. Inform. 14(2), 177–185 (2018)

    Google Scholar 

  35. L. Zhu, D. Jiang, J. Ni, X. Wang, X. Rong, M. Ahmad, Y. Chen, A stable meaningful image encryption scheme using the newly-designed 2d discrete fractional-order chaotic map and bayesian compressive sensing. Signal Process. 195, 108489 (2022)

    Google Scholar 

  36. G..-C.. Wu, Z..-G. Deng, D. Baleanu, D..-Q. Zeng, New variable-order fractional chaotic systems for fast image encryption. Chaos Interdiscip. J. Nonlinear Sci. 29(8), 083103 (2019)

    MathSciNet  MATH  Google Scholar 

  37. N. Fataf, M.A. Rahim, S. He, S. Banerjee, A communication scheme based on fractional order chaotic laser for internet of things. Internet Things 15, 100425 (2021)

    Google Scholar 

  38. S. Askar, A. Al-Khedhairi, A. Elsonbaty, A. Elsadany, Chaotic discrete fractional-order food chain model and hybrid image encryption scheme application. Symmetry 13(2), 161 (2021)

    ADS  Google Scholar 

  39. X. Gao, J. Mou, S. Banerjee, Y. Cao, L. Xiong, X. Chen, An effective multiple-image encryption algorithm based on 3d cube and hyperchaotic map. J. King Saud Univ. Comput. Inf. Sci. 34(4), 1535–1551 (2022)

    Google Scholar 

  40. X. Li, J. Mou, Y. Cao, S. Banerjee, An optical image encryption algorithm based on a fractional-order laser hyperchaotic system. Int. J. Bifurc. Chaos 32(03), 2250035 (2022)

    MathSciNet  MATH  Google Scholar 

  41. X. Gao, J. Yu, S. Banerjee, H. Yan, J. Mou, A new image encryption scheme based on fractional-order hyperchaotic system and multiple image fusion. Sci. Rep. 11(1), 1–21 (2021)

    Google Scholar 

  42. X. Li, J. Mou, S. Banerjee, Z. Wang, Y. Cao, Design and dsp implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption. Chaos Solitons Fractals 159, 112133 (2022)

    MathSciNet  MATH  Google Scholar 

  43. T. Abdeljawad, On riemann and caputo fractional differences. Comput. Math. Appl. 62(3), 1602–1611 (2011)

    MathSciNet  MATH  Google Scholar 

  44. A. Ouannas, A.A. Khennaoui, S. Momani, G. Grassi, V.-T. Pham, Chaos and control of a three-dimensional fractional order discrete-time system with no equilibrium and its synchronization. AIP Adv. 10(4), 045310 (2020)

    ADS  Google Scholar 

  45. J. Čermák, I. Győri, L. Nechvátal, On explicit stability conditions for a linear fractional difference system. Fract. Calcul. Appl. Anal. 18(3), 651–672 (2015)

    MathSciNet  MATH  Google Scholar 

  46. H.K. Khalil, Nonlinear Control, vol. 406 (Pearson, New York, 2015)

    Google Scholar 

  47. D.S. Acharya, S.K. Mishra, S.K. Swain, S. Ghosh, Real-time implementation of fractional-order pid controller for magnetic levitation plant with time delay. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)

    Google Scholar 

  48. S. Pandey, V. Dourla, P. Dwivedi, A. Junghare, Introduction and realization of four fractional-order sliding mode controllers for nonlinear open-loop unstable system: a magnetic levitation study case. Nonlinear Dyn. 98, 601–621 (2019)

    Google Scholar 

  49. S. Pandey, P. Dwivedi, A. Junghare, A novel 2-dof fractional-order pi\(\lambda\)-d\(\mu\) controller with inherent anti-windup capability for a magnetic levitation system. AEU Int. J. Electron. Commun. 79, 158–171 (2017)

    Google Scholar 

  50. G.-C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)

    MathSciNet  MATH  Google Scholar 

  51. G.-C. Wu, D. Baleanu, Jacobian matrix algorithm for lyapunov exponents of the discrete fractional maps. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 95–100 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  52. S.M. Pincus, Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88(6), 2297–2301 (1991)

    MathSciNet  MATH  ADS  Google Scholar 

  53. C. Huygens, Horologium Oscillatorium Sive de Motu Pendulorum Ad Horologia Aptato Demonstrationes Geometricae (F. Muguet, Apud, 1966)

    Google Scholar 

  54. L. Rayleigh, The Theory of Sound; with a Historical Introduction by Robert Bruce Lindsay (1945)

  55. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Science (American Association of Physics Teachers, Maryland, 2002)

    MATH  Google Scholar 

  56. S. Boccaletti, The synchronized dynamics of complex systems. Monogr. Ser. Nonlinear Sci. Complex. 6, 1–239 (2008)

    MathSciNet  MATH  Google Scholar 

  57. J.R. Terry, K.S. Thornburg Jr., D.J. DeShazer, G.D. VanWiggeren, S. Zhu, P. Ashwin, R. Roy, Synchronization of chaos in an array of three lasers. Phys. Rev. E 59(4), 4036 (1999)

    ADS  Google Scholar 

  58. C. Schäfer, M.G. Rosenblum, H.-H. Abel, J. Kurths, Synchronization in the human cardiorespiratory system. Phys. Rev. E 60(1), 857 (1999)

    ADS  Google Scholar 

  59. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51(2), 980 (1995)

    ADS  Google Scholar 

  60. S. Wang, Y. Yu, M. Diao, Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Phys. A 389(21), 4981–4988 (2010)

    Google Scholar 

  61. J.G. Lu, Chaotic dynamics of the fractional-order lü system and its synchronization. Phys. Lett. A 354(4), 305–311 (2006)

    ADS  Google Scholar 

  62. S.H. Hosseinnia, R. Ghaderi, M. Mahmoudian, S. Momani et al., Sliding mode synchronization of an uncertain fractional order chaotic system. Comput. Math. Appl. 59(5), 1637–1643 (2010)

    MathSciNet  MATH  Google Scholar 

  63. A.-A. Khennaoui, A. Ouannas, S. Bendoukha, G. Grassi, R.P. Lozi, V.-T. Pham, On fractional-order discrete-time systems: Chaos, stabilization and synchronization. Chaos Solitons Fractals 119, 150–162 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  64. G.-C. Wu, D. Baleanu, Chaos synchronization of the discrete fractional logistic map. Signal Process. 102, 96–99 (2014)

    Google Scholar 

  65. X. You, Q. Song, Z. Zhao, Global mittag-leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay. Neural Netw. 122, 382–394 (2020)

    MATH  Google Scholar 

  66. D. Vignesh, S. Banerjee, Reversible chemical reactions model with fractional difference operator: dynamical analysis and synchronization. Chaos Interdiscip. J. Nonlinear Sci. 33(3), 033126 (2023)

    MathSciNet  Google Scholar 

  67. M.B. Farah, A. Farah, T. Farah, An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. Nonlinear Dyn. 99(4), 3041–3064 (2020)

    Google Scholar 

  68. K.A.K. Patro, B. Acharya, A novel multi-dimensional multiple image encryption technique. Multimed. Tools Appl. 79(19–20), 12959–12994 (2020)

    Google Scholar 

  69. X. Wang, L. Liu, Y. Zhang, A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt. Lasers Eng. 66, 10–18 (2015)

    Google Scholar 

Download references

Acknowledgements

We would like to thank UPNM for supporting this research via Postdoctoral and postgraduate research Grant UPNM/2022/GPPP/SG/13, the Natural Science Foundation of China (no. 61901530) and the Natural Science Foundation of Hunan Province (no. 2020JJ5767).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Vignesh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, D., He, S. & Fataf, N.A.A. Chaotic dynamics of fractional difference magnetic levitation model with application to image encryption. Eur. Phys. J. Spec. Top. 232, 2675–2691 (2023). https://doi.org/10.1140/epjs/s11734-023-00917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00917-2

Navigation