Skip to main content
Log in

Dynamics analysis and cryptographic application of fractional logistic map

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on Lyapunov exponent, Schwarzian derivative, Shannon entropy and Kolmogorov entropy, we will firstly study chaos and bifurcation of fractional (semi-) logistic map (FLM). It is derived from fractional integration (not fractional derivative) of the classical logistic map. Then, this paper put forward a new accumulated coupled fractional (semi-) logistic map lattice (ACFLML) whose lattice function is the FLM. Local stability, pattern information, high-dimensional chaos and bifurcation of the ACFLML are analyzed based on stability theory, pattern simulation, 0–1 test for chaos, Lyapunov exponent spectrum and Kolmogorov entropy. Finally, the chaotic ACFLML is successfully applied to encryption and decryption of digital image. To evaluate security, histogram analysis, correlation analysis, differential attack, key space, key sensitivity, encryption time, computational complexity and chosen/known-plaintext attacks, analysis is performed. Simulation analysis shows that this encryption scheme is effective and has good statistical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003(54), 3413–3442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Petravs, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, New York (2011)

    Book  Google Scholar 

  4. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, New York (2010)

    Book  MATH  Google Scholar 

  5. Yuan, L., Yang, Q., Zeng, C.: Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn. 73(1–2), 439–448 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alam, Z., Yuan, L., Yang, Q.: Chaos and combination synchronization of a new fractional-order system with two stable node-foci. IEEE/CAA J. Autom. Sin. 3(2), 157–164 (2016)

    Article  MathSciNet  Google Scholar 

  7. Yuan, L.G., Yang, Q.G.: Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(1), 305–316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, L., He, Y., Chai, Y., Wu, R.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75(4), 633–641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, Q., Zeng, C.: Chaos in fractional conjugate Lorenz system and its scaling attractors. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4041–4051 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sweilam, N.H., Khader, M.M., Mahdy, A.M.: Numerical studies for fractional-order logistic differential equation with two different delays. J. Appl. Math. 2012 (2012)

  11. El-Sayed, A., El-Mesiry, A., El-Saka, H.: On the fractional-order logistic equation. Appl. Math. Lett. 20(7), 817–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nyamoradi, N., Javidi, M.: Dynamic analysis of a fractional-order Rikitake system. Dyn. Contin. Discrete Impuls. Syst. Ser. B 20(2), 189–204 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Zhen, W., Xia, H., Ning, L., Xiao-Na, S.: Image encryption based on a delayed fractional-order chaotic logistic system. Chin. Phys. B 21(5), 050,506 (2012)

    Article  Google Scholar 

  14. Wu, G.C., Baleanu, D., Lin, Z.X.: Image encryption technique based on fractional chaotic time series. J. Vib. Control 22(8), 2092–2099 (2016)

    Article  MathSciNet  Google Scholar 

  15. Zhao, J., Wang, S., Chang, Y., Li, X.: A novel image encryption scheme based on an improper fractional-order chaotic system. Nonlinear Dyn. 80(4), 1721–1729 (2015)

    Article  MathSciNet  Google Scholar 

  16. Munkhammar, J.: Chaos in a fractional order logistic map. Fract. Calc. Appl. Anal. 16(3), 511–519 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaneko, K.: Theory and Applications of Coupled Map Lattices. Wiley, New York (1993)

    MATH  Google Scholar 

  18. Li, P., Li, Z., Halang, W.A., Chen, G.: Li–Yorke chaos in a spatiotemporal chaotic system. Chaos Solitons Fractals 33(2), 335–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yuan, L.G., Yang, Q.G.: A proof for the existence of chaos in diffusively coupled map lattices with open boundary conditions. Discrete Dyn. Nat. Soc. 2011 (2011)

  20. Vasegh, N.: Spatiotemporal and synchronous chaos in accumulated coupled map lattice. Nonlinear Dyn. 89(2), 1089–1097 (2017)

    Article  MATH  Google Scholar 

  21. Xie, F., Hu, G.: Spatiotemporal periodic pattern and propagated spatiotemporal on-off intermittency in the one-way coupled map lattice system. Phys. Rev. E 53(5), 4439 (1996)

    Article  Google Scholar 

  22. Zhang, Y.Q., Wang, X.Y.: Spatiotemporal chaos in mixed linear-nonlinear coupled logistic map lattice. Phys. A Stat. Mech. Appl. 402, 104–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y.Q., He, Y., Wang, X.Y.: Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice. Phys. A Stat. Mech. Appl. 490, 148–160 (2018)

    Article  MathSciNet  Google Scholar 

  24. Zhang, Y.Q., Wang, X.Y.: A new image encryption algorithm based on non-adjacent coupled map lattices. Appl. Soft Comput. 26, 10–20 (2015)

    Article  Google Scholar 

  25. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459 (1976)

    Article  MATH  Google Scholar 

  26. Zhang, Y.Q., Wang, X.Y., Liu, L.Y., He, Y., Liu, J.: Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices. Commun. Nonlinear Sci. Numer. Simul. 52, 52–61 (2017)

    Article  MathSciNet  Google Scholar 

  27. Dos Santos, A.M., Viana, R.L., Lopes, S.R., Pinto, SdS, Batista, A.M.: Chaos synchronization in a lattice of piecewise linear maps with regular and random couplings. Phys. A Stat. Mech. Appl. 367, 145–157 (2006)

    Article  Google Scholar 

  28. Song, C.Y., Qiao, Y.L., Zhang, X.Z.: An image encryption scheme based on new spatiotemporal chaos. Optik Int. J. Light Electron Opt. 124(18), 3329–3334 (2013)

    Article  Google Scholar 

  29. Ye, R., Zhou, W.: An image encryption scheme based on 2D tent map and coupled map lattice. Int. J. Inf. Commun. Technol. Res. 1(8) (2011)

  30. Zhang, Y.Q., Wang, X.Y.: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice. Inf. Sci. 273, 329–351 (2014)

    Article  Google Scholar 

  31. Liu, S., Sun, F.: Spatial chaos-based image encryption design. Sci. China Ser. G: Phys. Mech. Astron. 52(2), 177–183 (2009)

    Article  Google Scholar 

  32. Wang, X.Y., Wang, T.: A novel algorithm for image encryption based on couple chaotic systems. Int. J. Mod. Phys. B 26(30), 1250,175 (2012)

    Article  Google Scholar 

  33. Fu-Yan, S., Zong-Wang, L.: Digital image encryption with chaotic map lattices. Chin. Phys. B 20(4), 040,506 (2011)

    Article  Google Scholar 

  34. Li, C., Feng, B., Li, S., Kurths, J., Chen, G.: Dynamic analysis of digital chaotic maps via state-mapping networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 1–14 (2019)

  35. Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76(4), 1951–1962 (2014)

    Article  Google Scholar 

  36. Matthews, R.: On the derivation of a chaotic encryption algorithm. Cryptologia 13(1), 29–42 (1989)

    Article  MathSciNet  Google Scholar 

  37. Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G.: On the security defects of an image encryption scheme. Image Vis. Comput. 27(9), 1371–1381 (2009)

    Article  Google Scholar 

  38. Zhu, H., Zhang, X., Yu, H., Zhao, C., Zhu, Z.: An image encryption algorithm based on compound homogeneous hyper-chaotic system. Nonlinear Dyn. 89(1), 61–79 (2017)

    Article  Google Scholar 

  39. Hua, Z., Jin, F., Xu, B., Huang, H.: 2D Logistic-Sine-coupling map for image encryption. Signal Process. 149, 148–161 (2018)

    Article  Google Scholar 

  40. Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)

    Article  Google Scholar 

  41. Xie, E.Y., Li, C., Yu, S., Lü, J.: On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process. 132, 150–154 (2017)

    Article  Google Scholar 

  42. Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I: Regul. Pap. 63(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  43. Ozkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92(2), 305–313 (2018)

    Article  Google Scholar 

  44. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  45. Arnold, L., Wihstutz, V.: Lyapunov Exponents: A Survey. Springer, New York (1986)

    Book  MATH  Google Scholar 

  46. Devaney, R.: An Introduction to Chaotic Dynamical Systems. Westview Press, Boulder (2008)

    Google Scholar 

  47. Schuster, H.G., Just, W.: Deterministic Chaos: An Introduction. Wiley, New York (2006)

    MATH  Google Scholar 

  48. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  49. Garbaczewski, P., Olkiewicz, R.: Dynamics of Dissipation, vol. 597. Springer, New York (2002)

    Book  MATH  Google Scholar 

  50. Dorfman, J.R.: An Introduction to Chaos in Nonequilibrium Statistical Mechanics, vol. 14. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  51. Andrecut, M., Ali, M.: Robust chaos in smooth unimodal maps. Phys. Rev. E 64(2), 025,203 (2001)

    Article  MathSciNet  Google Scholar 

  52. Banerjee, S., Verghese, G.C.: Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control. IEEE Press, New York (2001)

    Book  Google Scholar 

  53. Wang, X.: Period-doublings to chaos in a simple neural network: an analytical proof. Complex Syst. 5(4), 425–44 (1991)

    MathSciNet  MATH  Google Scholar 

  54. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (2013)

    MATH  Google Scholar 

  55. Nusse, H.E., Yorke, J.A.: Period halving for \(x_n+1={M F}(x_n)\) where F has negative Schwarzian derivative. Phys. Lett. A 127(6–7), 328–334 (1988)

    Article  MathSciNet  Google Scholar 

  56. Devaney, R.L., Siegel, P.B., Mallinckrodt, A.J., McKay, S.: A first course in chaotic dynamical systems: theory and experiment. Comput. Phys. 7(4), 416–417 (1993)

    Article  Google Scholar 

  57. Khellat, F., Ghaderi, A., Vasegh, N.: Li–Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice. Chaos Solitons Fractals 44(11), 934–939 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 460(2042), 603–611 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Gottwald, G.A., Melbourne, I.: Testing for chaos in deterministic systems with noise. Physica D 212(1–2), 100–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. Gottwald, G.A., Melbourne, I.: On the validity of the 0–1 test for chaos. Nonlinearity 22(6), 1367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Guedes, A.V., Savi, M.A.: Spatiotemporal chaos in coupled logistic maps. Phys. Scr. 81(4), 045,007 (2010)

    Article  MATH  Google Scholar 

  63. Zhang, Y.: Chaotic Digital Image Cryptosystem. Tsinghua University Press, Beijing (2016). (in Chinese)

    Google Scholar 

  64. Li, C., Lin, D., Lü, J.: Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE MultiMedia 24(3), 64–71 (2017)

    Article  Google Scholar 

  65. Ye, G.: Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recognit. Lett. 31(5), 347–354 (2010)

    Article  Google Scholar 

  66. Maniyath, S.R., Supriya, M.: An uncompressed image encryption algorithm based on DNA sequences. Comput. Sci. Inf. Technol. 2, 258–270 (2011)

    Google Scholar 

  67. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. 1(2), 31–38 (2011)

    Google Scholar 

  69. Zhu, H., Zhang, X., Yu, H., Zhao, C., Zhu, Z.: A novel image encryption scheme using the composite discrete chaotic system. Entropy 18(8), 276 (2016)

    Article  Google Scholar 

  70. Zhu, Z., Zhang, W., Wong, Kw, Yu, H.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 181(6), 1171–1186 (2011)

    Article  Google Scholar 

  71. Zhou, Y., Bao, L., Chen, C.P.: Image encryption using a new parametric switching chaotic system. Signal Process. 93(11), 3039–3052 (2013)

    Article  Google Scholar 

  72. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  73. Li, C., Lin, D., Lü, J., Hao, F.: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE MultiMedia 25(04), 46–56 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the Open Project of Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing (No. 2017CSOBDP0302), the Science and Technology Program of Guangzhou (No. 201707010031), the National Natural Science Foundation of China (Nos. 11671149, 51777180, 11402226), the Natural Science Foundation of Zhejiang Province (No. LY17A020007), First Class Discipline of Zhejiang−A (Zhejiang University of Finance and Economics-Statistics) and the Preeminent Youth Fund of Zhejiang University of Finance and Economics and Higher Education Commission of Pakistan under Start-up Research Grant Project (SRGP) (\(\#\)1419). L. G. Yuan’s research is partially supported by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Zheng, S. & Alam, Z. Dynamics analysis and cryptographic application of fractional logistic map. Nonlinear Dyn 96, 615–636 (2019). https://doi.org/10.1007/s11071-019-04810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04810-3

Keywords

Navigation