Skip to main content

Advertisement

Log in

Assessment of a NaIL detector performance for radiation monitoring applications

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The European decommissioning and dismantling (D &D) market of nuclear facilities is characterized by significant long-term growth. The EU-funded CLEANDEM project aims to develop a technological breakthrough for D &D operations that will save time, reduce costs, and minimize human intervention while increasing safety. The project will deliver a cyber-physical system using an unmanned ground vehicle platform equipped with innovative radiological sensing probes. In the framework of the CLEANDEM project, the main goal of this work is to study an alternative solution, i.e., the NaIL detector, to upgrade and integrate the neutron/gamma detection capability to the platform for radiological survey applications. The study consists in characterizing a 2“\(\times \)2” NaIL detector in terms of energy resolution, full-energy peak gamma efficiency, thermal neutron/gamma discrimination capability, neutron efficiency, and gamma rejection ratio (at high counting rate). Besides, the time resolution and the decay time components of the neutron and gamma-ray induced signals have been reported. Experiments were combined with Monte Carlo simulations, using GEANT4 v10.7, to complement the characterization. The Monte Carlo simulations are in good agreement with the experimental results. Finally, an online analysis software has been developed to perform a simple radiological survey in laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Notes

  1. The source is available in the repository: https://github.com/ec-jrc/abcd.

  2. JSON: JavaScript Object Notation is an open standard file format, and data interchange format, that uses human-readable text to store and transmit data objects consisting of attribute–value pairs and array data types (or any other serializable value).

References

  1. IAEA, Decommissioning of Facilities. No. GSR Part 6 in General Safety Requirements, Vienna: Int. Atomic Energy Agency, 2014

  2. IAEA, Status and Trends in Spent Fuel and Radioactive Waste Management. No. NW-T-1.14 (Rev. 1) in Nuclear Energy Series, Vienna: Int. Atomic Energy Agency, 2022

  3. IAEA, Radiological characterization of shut down nuclear reactors for decommissioning purposes. Internat. Atomic Energy Agency, 1998

  4. N. Dufour, J. Dumazert, E. Barat, G. Bertrand, F. Carrel, T. Dautremer, F. Lainé, A. Sari, Measurement of low-activity uranium contamination by gamma-ray spectrometry for nuclear decommissioning. Nucl. Inst. Methods Phys. Res. Sect. A 951, 162976 (2020)

    Article  Google Scholar 

  5. M. Kaburagi, K. Shimazoe, M. Kato, T. Kurosawa, K. Kamada, K.J. Kim, M. Yoshino, Y. Shoji, A. Yoshikawa, H. Takahashi, T. Torii, Gamma-ray spectroscopy with a CeBr 3 scintillator under intense \(\gamma \) -ray fields for nuclear decommissioning. Nucl. Inst. Methods Phys. Res. Sect. A 988, 164900 (2021)

    Article  Google Scholar 

  6. B. Pérot, F. Jallu, C. Passard, O. Gueton, P.-G. Allinei, L. Loubet, N. Estre, E. Simon, C. Carasco, C. Roure, L. Boucher, H. Lamotte, J. Comte, M. Bertaux, A. Lyoussi, P. Fichet, F. Carrel, The characterization of radioactive waste: a critical review of techniques implemented or under development at CEA, France. EPJ Nucl. Sci. Technol. 4, 3 (2018)

    Article  ADS  Google Scholar 

  7. L. Caifeng, Q. Jianguo, X. Jun, Z. Tonghua, L. Xinxin, A. Li, M. Yunfeng, Z. Pu, S. Junjie, J. Li, W. Mei, H. Zijie, Particle discrimination and fast neutron response for a NaIL: Tl and a NaI: Tl scintillator detector. Nucl. Inst. Methods Phys. Res. Sect. A 978, 164372 (2020)

    Article  Google Scholar 

  8. F. Liang, H. Brands, L. Hoy, J. Preston, J. Smith, Lithium-Loaded Scintillators Coupled to a Custom-Designed Silicon Photomultiplier Array for Neutron and Gamma-Ray Detection. IEEE Trans. Nucl. Sci. 65, 2162–2168 (2018)

    Article  ADS  Google Scholar 

  9. M. Tao, Z. Wang, Q. Chen, F. Li, J. Qi, P. Qi, T. Gao, Q. Zhao, Z. Zhang, B. Zhu, C. Zhao, R. Zhou, C. Yang, Design and performance of a NaIL detector for neutron/gamma discrimination. J. Inst. 16, P08067 (2021)

    ADS  Google Scholar 

  10. K. Yang, P. R. Menge, and V. Ouspenski, “Li co-doped NaI:Tl (NaIL) — A Large Volume Neutron-Gamma Scintillator with Exceptional Pulse Shape Discrimination,” IEEE Transactions on Nuclear Science, pp. 1, 2017

  11. “Saint-Gobain Crystals.” https://www.crystals.saint-gobain.com. Accessed: 2022-01-13

  12. S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., “Geant4-a simulation toolkit,” Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250–303, (2003)

  13. C.L. Fontana, A. Carnera, M. Lunardon, F.E. Pino, C. Sada, F. Soramel, L. Stevanato, S. Moretto, A distributed data acquisition system for nuclear detectors. Int. J. Modern Phys. 48, 1860118 (2018)

    Google Scholar 

  14. D. Cester, M. Lunardon, G. Nebbia, L. Stevanato, G. Viesti, S. Petrucci, C. Tintori, Pulse shape discrimination with fast digitizers. Nucl. Inst. Methods Phys. Res. Sect. A 748, 33–38 (2014)

    Article  ADS  Google Scholar 

  15. G. F. Knoll, Radiation detection and measurement. John Wiley & Sons, 2 ed., (2010)

  16. R. Casanovas, J.J. Morant, M. Salvadó, Energy and resolution calibration of NaI(Tl) and LaBr 3(Ce) scintillators and validation of an EGS5 Monte Carlo user code for efficiency calculations. Nucl. Inst. Methods Phys. Res. Sec. A 675, 78–83 (2012)

    Article  ADS  Google Scholar 

  17. “CAEN module user manual.” https://www.caen.it/products/v1730/. Accessed: 2022-01-13

  18. F. Pino, C. Fontana, J. Delgado, D. Fabris, G. Nebbia, M. Turcato, D. Brunelli, L. Pancheri, A. Quaranta, S. Moretto, Characterization of a medium-sized CLLB scintillator: single neutron/gamma detector for radiation monitoring. J. Inst. 16, P11034 (2021)

    ADS  Google Scholar 

  19. F. Pino, L. Stevanato, D. Cester, G. Nebbia, L. Sajo-Bohus, G. Viesti, Detecting fast and thermal neutrons with a boron loaded liquid scintillator, ej-339a. Appl. Radiat. Isotopes 92, 6–11 (2014)

    Article  Google Scholar 

  20. P. Hintjens, “Ømq-the guide,” Online: http://zguide. zeromq. org/page: all, Accessed on, vol. 23, (2011)

  21. C. Fontana, N. Tuccori, F. Pino, M. Lunardon, L. Stevanato, S. Moretto, Performance comparison between signal digitizers and low-cost digital oscilloscopes: Spectroscopic, pulse shape discrimination and timing capabilities for nuclear detectors. J. Inst. 15, P06020–P06020 (2020)

    ADS  Google Scholar 

  22. K. Ianakiev, B. Alexandrov, P. Littlewood, M. Browne, Temperature behavior of nai(tl) scintillation detectors. Nucl. Inst. Methods Phys. Res. Sect. A 607(2), 432–438 (2009)

    Article  ADS  Google Scholar 

  23. K. Ianakiev, B. Alexandrov, D. Close, D. Dale, J. Goda, T. Hill, T. Marks, C. Moss, and H. Nguyen, “Effect of temperature on counting measurements in a uranium enrichment monitor based on a nai (tl) spectrometer and transmission source,” in 2006 IEEE nuclear science symposium conference record, vol. 1, pp. 552–556, IEEE, (2006)

  24. M. Tao, Z. Wang, Q. Chen, F. Li, J. Qi, P. Qi, T. Gao, Q. Zhao, Z. Zhang, B. Zhu, C. Zhao, R. Zhou, C. Yang, Design and performance of a nail detector for neutron/gamma discrimination. J. Inst. 16, P08067 (2021)

    ADS  Google Scholar 

  25. R. Casanovas, J. Morant, M. Salvadó, Temperature peak-shift correction methods for nai(tl) and labr3(ce) gamma-ray spectrum stabilisation. Radiat. Measure. 47(8), 588–595 (2012)

    Article  ADS  Google Scholar 

  26. R. S. Woolf, E. A. Wulf, B. F. Phlips, P. Chowdhury, and E. G. Jackson, “Identification of internal radioactive contaminants in elpasolites (clyc, cllb, cllbc) and other inorganic scintillators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 954, p. 161228, 2020. Symposium on Radiation Measurements and Applications XVII

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 945335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Polo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polo, M., Pino, F., Delgado, J.C.A. et al. Assessment of a NaIL detector performance for radiation monitoring applications. Eur. Phys. J. Spec. Top. 232, 1477–1486 (2023). https://doi.org/10.1140/epjs/s11734-023-00896-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00896-4

Navigation