Skip to main content
Log in

Laser induced ultrafast Gd 4f spin dynamics in Co100-xGdx alloys by means of time-resolved XMCD

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We have studied the laser induced ultrafast quenching of Gd 4f magnetic order in ferrimagnetic Co100-xGdx alloys to highlight the role of the Co 3d–Gd 5d inter-atomic exchange coupling. We have taken advantage of the ultrashort soft X-ray pulses deliver by the femtoslicing beamline at the BESSY II synchrotron radiation source at the Helmholtz–Zentrum Berlin to perform element- and time-resolved X-ray Magnetic Circular Dichroism spectroscopy. Our results show that the laser induced quenching of Gd 4f magnetic order occurs on very different time-scales for the Co72Gd28, the Co77Gd23 and the Co79Gd21 alloys. Most of the magnetic moment losses occur within the first picosecond (ps) while the electron distribution is strongly out of equilibrium. After the equilibration of the electrons and lattice temperatures (t > 1 ps), the magnetic losses occur on slower rates that depend on the alloy composition: increasing the Co composition speeds up the demagnetization of Gd 4f sublattice. The strength of the Co 3d–Gd 5d inter-atomic exchange coupling which depends on composition, determines the efficiency of the angular momentum flow from the Gd 4f spin towards the lattice. Our results are in qualitative agreements with the predictions of the microscopic three temperatures model for ferrimagnetic alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Mishra et al., IEEE Trans. Magn. 57, 0800134 (2021)

    Google Scholar 

  2. Beaurepaire et al., Phys. Rev. Lett 76, 4250 (1996)

    ADS  Google Scholar 

  3. Kirilyuk et al., Rev. Mod. Phys. 82, 2731 (2010)

    ADS  Google Scholar 

  4. Bigot et al., Ann. Phys. 525, 2 (2013)

    Google Scholar 

  5. Yang et al., Sci. Adv. 3, e1603117 (2017)

    ADS  Google Scholar 

  6. Ostler et al., Nat. Commun. 3, 666 (2012)

    ADS  Google Scholar 

  7. Lalieu et al., Phys. Rev. B 96, 220411(R) (2017)

    ADS  Google Scholar 

  8. Y. Xu et al., Adv. Mat. 29, 1703474 (2017)

    Google Scholar 

  9. Iihama et al., Adv. Mater. 30, 1804004 (2018)

    Google Scholar 

  10. Rémy et al., Adv. Sci. 200, 2020 (1996)

    Google Scholar 

  11. Iihama et al., J. Phys. Soc. Jpn. 90, 081009 (2021)

    ADS  Google Scholar 

  12. Wei et al., Phys. Rev. Appl. 15, 054065 (2021)

    ADS  Google Scholar 

  13. Radu et al., Nature 472, 205 (2011)

    ADS  Google Scholar 

  14. Lopez-Flores et al., Phys. Rev. B 87, 214412 (2013)

    ADS  Google Scholar 

  15. Bergeard et al., Nat. Commun. 5, 3466 (2014)

    ADS  Google Scholar 

  16. Radu et al., SPIN 5, 1550004 (2015)

    ADS  Google Scholar 

  17. Higley et al., Rev. Sci. Instrum. 87, 033110 (2016)

    ADS  Google Scholar 

  18. Hennecke et al., Phys. Rev. Lett. 122, 157202 (2019)

    ADS  Google Scholar 

  19. Wietstruk et al., Phys. Rev. Lett. 106, 127401 (2011)

    ADS  Google Scholar 

  20. Eschenlohr et al., Phys. Rev. B 89, 214423 (2014)

    ADS  Google Scholar 

  21. Chen et al., New J. Phys. 21, 123007 (2019)

    Google Scholar 

  22. Zhang et al., Phys. Rev. B 105, 054410 (2022)

    ADS  Google Scholar 

  23. Ren et al. arXiv:2012.14620 (2020)

  24. Mekkonen et al., Phys. Rev. B. 87, 180406 (2013)

    ADS  Google Scholar 

  25. Atxitia et al., Phys. Rev. B 89, 224421 (2014)

    ADS  Google Scholar 

  26. Schellekens et al., Phys. Rev. B 87, 020407(R) (2013)

    ADS  Google Scholar 

  27. Tao et al., AIP Conf. Proc. 18, 641 (1974)

    ADS  Google Scholar 

  28. Hansen et al., J. Appl. Phys. 66, 756 (1989)

    ADS  Google Scholar 

  29. Koopmans et al., Nat. Mater. 9, 259 (2010)

    ADS  Google Scholar 

  30. Beens et al., Phys. Rev. B 100, 220409(R) (2019)

    ADS  Google Scholar 

  31. Bergeard et al., Phys. Rev. B. 96, 064418 (2017)

    ADS  Google Scholar 

  32. R. Abrudan et al., Rev. Sci. Instrum. 86, 063902 (2015)

    ADS  Google Scholar 

  33. R.C. Taylor et al., J. Appl. Phys. 47, 4666 (1976)

    ADS  Google Scholar 

  34. Holldack et al., J. Synchrotron Radiat. 21, 1090 (2014)

    Google Scholar 

  35. Stanciu et al., Phys. Rev. Lett. 99, 217204 (2007)

    ADS  Google Scholar 

  36. Ferté et al., J. Magn. Magn. Mat. 530, 167883 (2021)

    Google Scholar 

  37. Stanciu et al., Phys. Rev. B 73, 220402 (2006)

    ADS  Google Scholar 

  38. Binder et al., Phys. Rev. B 74, 134404 (2006)

    ADS  Google Scholar 

  39. Hopkins et al., J. Appl. Phys 111, 103533 (2012)

    ADS  Google Scholar 

  40. Kim et al., Appl. Phys. Lett. 94, 192506 (2009)

    ADS  Google Scholar 

  41. Jiao et al., IEEE Trans. Magn. 49, 3191 (2013)

    ADS  Google Scholar 

  42. Ren et al., SPIN 7, 1740003 (2017)

    ADS  Google Scholar 

  43. Li et al., Phys. Rev. B 97, 184432 (2018)

    ADS  Google Scholar 

  44. Khorsand et al., Phys. Rev. Lett. 110, 107205 (2013)

    ADS  Google Scholar 

  45. Ferté et al., Phys. Rev. B 96, 144427 (2017)

    ADS  Google Scholar 

  46. Abrudan et al., Phys. Status Solidi RRL. 15, 2100047 (2021)

    Google Scholar 

  47. Frietsch et al., Sci. Adv. 6, 1601 (2020)

    ADS  Google Scholar 

  48. Windsor et al. Nat. Mater. (2022)

  49. Dornes et al., Nature 565, 209 (2019)

    ADS  Google Scholar 

  50. Ciuciulkaite et al., Phys. Rev. Mat. 4, 104418 (2020)

    Google Scholar 

  51. Fan et al., Optica. 9, 399 (2022)

    ADS  Google Scholar 

  52. Hennecke et al., Phys. Rev. Res. 4, L022062 (2022)

    Google Scholar 

Download references

Acknowledgements

We are indebted for the scientific and technical support given by N. Pontius, Ch. Schüßler-Langeheine and R. Mitzner at the slicing facility at the BESSY II storage ring. The authors are grateful for financial support received from the following agencies: the French “Agence National de la Recherche” via Project No. ANR-11-LABX-0058_NIE and Project EQUIPEX UNION No. ANR-10-EQPX-52 and the EU Contract Integrated Infrastructure Initiative I3 in FP6 Project No. R II 3CT-2004-506008. This work was supported partly by the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, by the Project Plus cofounder by the “FEDER-FSE Lorraine et Massif Vosges 2014-2020”, a European Union Program and by the OVNI project from Region Grand-Est and by the MATELAS project institut Carnot ICEEL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bergeard.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferté, T., Beens, M., Malinowski, G. et al. Laser induced ultrafast Gd 4f spin dynamics in Co100-xGdx alloys by means of time-resolved XMCD. Eur. Phys. J. Spec. Top. 232, 2213–2219 (2023). https://doi.org/10.1140/epjs/s11734-023-00812-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00812-w

Navigation