Skip to main content
Log in

High-temperature spin dynamics studied by solid-state nuclear resonance and electron paramagnetic resonance in 29Si:B crystals

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The relaxation of nuclear magnetization in the 29Si:B crystals obeys power-law kinetics at 300 K due to direct electron–nuclear relaxation. Admixture of the exponential relaxation associated with spin diffusion was revealed at higher temperatures. The inhomogeneous distribution of linear deformation defects was revealed by electron paramagnetic resonance. This factor mainly contributes to power-law kinetics of nuclear spin relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hui HT (2006) Numerical method for determination of the NMR frequency of the single-qubit operation in a silicon-based solid-state quantum computer. Phys Rev B 74:195309

    Article  Google Scholar 

  2. Zwanenburg FA, Dzurak AS, Morello A, Simmons MY, Hollenberg LCL, Klimeck G, Rogge S, Coppersmith SN, Eriksson MA (2013) Silicon quantum electronics. Rev Mod Phys 85:961–1019

    Article  Google Scholar 

  3. Shlimak I, Safarov VI, Vagner ID (2001) Isotopically engineered silicon/silicon-germanium nanostructures as basic elements for a nuclear spin quantum computer. J Phys 13:6059

    Google Scholar 

  4. Itoh KM (2005) An all-silicon linear chain NMR quantum computer. Solid State Commun 133:747

    Article  Google Scholar 

  5. Kane BE (1998) A silicon-based nuclear spin quantum computer. Nature 393:133–137

    Article  Google Scholar 

  6. Simmons S, Brown RM, Riemann H, Abrosimov NV, Becker P, Pohl H, Thewalt MLW, Itoh KM, Morton JJL (2011) Entanglement in a solid-state spin ensemble. Nature 470:69–72

    Article  Google Scholar 

  7. Stegner AR, Tezuka H, Riemann H, Abrosimov NV, Becker P, Pohl HJ, Thewalt MLW, Itoh KM, Brandt MS (2011) Correlation of residual impurity concentration and acceptor electron paramagnetic resonance linewidth in isotopically engineered Si. Appl Phys Lett 99:032101

    Article  Google Scholar 

  8. Hayashi H, Itoh KM, Vlasenko LS (2008) Nuclear magnetic resonance linewidth and spin diffusion in 29Si isotopically controlled silicon. Phys Rev B 78:153201

    Article  Google Scholar 

  9. Hayashi H, Itahashi T, Itoh KM, Vlasenko LS, Vlasenko MP (2009) Nuclear magnetic resonance linewidth and spin diffusion in 29Si isotopically controlled silicon. Phys Rev B 80:045201

    Article  Google Scholar 

  10. Fuller SE, Meintjes EM, Warren WW (1996) Impurity NMR study of the acceptor band in Si(B). Phys Rev Lett 76:2806

    Article  Google Scholar 

  11. Sundfors RK, Holcomb DF (1964) Nuclear magnetic resonance studies of the metallic transition in doped silicon. Phys Rev 136:A810–A820

    Article  Google Scholar 

  12. Neubrand H (1978) ESR from boron in silicon at zero and small external stress I. Line positions and line structure. Phys Status Solidi (b) 86:269–275

    Article  Google Scholar 

  13. Bartelsen L (1977) The EPR fine structure spectrum of dislocations in silicon. Phys Status Solidi (b) 81:471–478

    Article  Google Scholar 

  14. Stegner AR, Tezuka H, Andlauer T, Stutzmann M, Thewalt MLW, Brandt MS, Itoh KM (2010) Isotope effect on electron paramagnetic resonance of boron acceptors in silicon. Phys Rev B 82:115213

    Article  Google Scholar 

  15. Tezuka H, Stegner AR, Tyryshkin AM, Shankar S, Thewalt MLW, Lyon SA, Itoh KM, Brandt MS (2010) Isotope effect on electron paramagnetic resonance of boron acceptors in silicon. Phys Rev B 81:161203(R)

    Article  Google Scholar 

  16. Bagraev NT, Gusarov AI, Mashkov VA (1987) Spin-dependent processes in one-dimensional disordered dangling-bond systems in semiconductors. J Exp Theor Phys 92:548–549

    Google Scholar 

  17. Grazhulis VA, Ossipyan YuA (1971) Electron paramagnetic resonance of dislocations in silicon. J Exp Theor Phys 60:623–628

    Google Scholar 

  18. Weber ER, Alexander H (1983) Deep level defects in plastically deformed silicon. J Phys 44:C4-319–C4-328

    Google Scholar 

  19. Bagraev NT, Vlasenko LS (1982) Optical polarization of lattice nuclei in plastically deformed silicon. J Exp Theor Phys 83:1267–1274

    Google Scholar 

  20. Edèn M (2012) NMR studies of oxide-based glasses. Annu Rep Prog Chem Sect C 108:177–221

    Article  Google Scholar 

  21. Verhulst AS, Maryenko D, Yamamoto Y, Itoh KM (2003) Double and single peaks in nuclear magnetic resonance spectra of natural and 29Si—enriched single-crystal silicon. Phys Rev B 68:054105

    Article  Google Scholar 

  22. Devreux F, Boilot JP, Chaput F, Sapoval B (1990) NMR determination of the fractal dimension in silica aerogels. Phys Rev Lett 65:614

    Article  Google Scholar 

  23. Sen S, Stebbins JF (1994) Phase separation, clustering, and fractal characteristics in glass: a magic-angle-spinning NMR spin-lattice relaxation study. Phys Rev B 50:822

    Article  Google Scholar 

  24. Blumberg WE (1960) Nuclear spin-lattice relaxation caused by paramagnetic impurities. Phys Rev 119:79

    Article  Google Scholar 

  25. Le Guennec P, Nechtschein M, Travers JP (1993) Nonexponential NMR relaxations in heterogeneously doped solids. Phys Rev B 47:2893

    Article  Google Scholar 

  26. Feher G, Hensel JC, Gere EA (1960) Paramagnetic resonance absorption from acceptors in silicon. Phys Rev Lett 5:309

    Article  Google Scholar 

  27. Skvortsov AA, Orlov AM, Gonchar LI (2001) The effect of a weak magnetic field on the mobility of dislocations in silicon. J Exp Theor Phys 93:117 (Rus. Translated from Zhurnal Éksperimental’noi Teoretichesko Fiziki, 120(1):134–138, 2001)

    Article  Google Scholar 

  28. Yonenaga I, Takahashi K (2006) Effect of high-magnetic-field on dislocation-oxygen impurity interaction in Si. J Phys 51:407

    Google Scholar 

Download references

Acknowledgements

O.V.K. (Project 14-03-31004) and R.B.M. (Project 13-07-12027) thank Russian Foundation for Basic Researches for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Morgunov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgunov, R.B., Koplak, O.V. High-temperature spin dynamics studied by solid-state nuclear resonance and electron paramagnetic resonance in 29Si:B crystals. J Mater Sci 51, 1838–1844 (2016). https://doi.org/10.1007/s10853-015-9490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9490-2

Keywords

Navigation