Skip to main content
Log in

Rational quadratic trigonometric spline fractal interpolation functions with variable scalings

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Fractal interpolation function (FIF) constructed through an iterated function system is more versatile than any classical spline interpolation. In this paper, we propose a novel \(C^1\)-rational quadratic trigonometric spline FIF with variable scaling, where the numerator and denominator of rational function are quadratic trigonometric polynomials with two shape parameters in every subinterval. The error and convergence analysis of the proposed rational trigonometric fractal interpolant are studied for data generating function in \(C^3\). We deduce sufficient conditions based on the parameters of the rational quadratic trigonometric spline FIF to preserve positivity, monotonicity, and range restrictions features of the concerned data sets. Numerical examples are presented to supplement the shape preserving results based on a restricted class of scaling functions and minimum values of the shape parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The manuscript has no associated data.

References

  1. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3, 133–181 (1922)

    Article  MATH  Google Scholar 

  2. M.F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2(1), 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.F. Barnsley, Fractals Everywhere (Academic Press, Boston, 1988)

    MATH  Google Scholar 

  4. M.F. Barnsley, A.N. Harrington, The calculus of fractal interpolation functions. J. Approx. Theory 57(1), 14–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. U. Bashir, J.M. Ali, Data visualization using rational trigonometric spline. J. Appl. Math. (2013). https://doi.org/10.1155/2013/531497

    Article  MATH  Google Scholar 

  6. S. Butt, K.W. Brodlie, Preserving positivity using piecewise cubic interpolation. Comput. Graph. 17(1), 55–64 (1993)

    Article  Google Scholar 

  7. A.K.B. Chand, G.P. Kapoor, Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.K.B. Chand, N. Vijender, M.A. Navascués, Shape preservation of scientific data through rational fractal splines. Calcolo 51(2), 329–362 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.K.B. Chand, P. Viswanathan, N. Vijender, Bicubic partially blended rational fractal surface for a constrained interpolation problem. Comput. Appl. Math. 37(1), 785–804 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Delbourgo, J.A. Gregory, \(C^2\)-rational quadratic spline interpolation to monotonic data. IMA J. Numer. Anal. 3, 141–152 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Delbourgo, J.A. Gregory, The determination of derivative parameters for a monotonic rational quadratic interpolant. IMA J. Numer. Anal. 5, 397–406 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Delbourgo, J.A. Gregory, Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput. 6, 967–976 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. F.N. Fritsch, J. Butland, A method for constructing local monotone piecewise cubic interpolants. SIAM J. Sci. Stat. Comput. 5(2), 300–384 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. F.N. Fritsch, R.E. Carlson, Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J.A. Gregory, R. Delbourgo, Piecewise rational quadratic interpolation to monotonic data. IMA J. Numer. Anal. 2(2), 123–130 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Han, Quadratic trigonometric polynomial curves with a shape parameter. Comput. Aided Geom. Des. 19(7), 503–512 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.Z. Hussain, N. Ayub, M. Irshad, Visualization of 2D data by rational quadratic function. J. Inf. Comput. Sci. 2(1), 17–26 (2007)

    Google Scholar 

  18. M.Z. Hussain, M. Hussain, A. Waseem, Shape preserving trigonometric functions. Comput. Appl. Math. 33, 411–431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.Z. Hussain, S. Saleem, \(C^1\) rational quadratic trigonometric spline. Egypt. Inf. J. 14, 211–220 (2013)

    Google Scholar 

  20. J. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Ibraheem, M. Hussain, M.Z. Hussain, A.A. Bhatti, Positive data visualization using trigonometric function. J. Appl. Math. (2012). https://doi.org/10.1155/2012/247120

    Article  MATH  Google Scholar 

  22. S. Jha, A.K.B. Chand, M.A. Navascués, Approximation by shape preserving fractal functions with variable scaling. Calcolo (2021). https://doi.org/10.1007/s10092-021-00396-8

    Article  MathSciNet  MATH  Google Scholar 

  23. S.K. Katiyar, A.K.B. Chand, G.K. Kumar, A new class of rational cubic spline fractal interpolation function and its constrained aspects. Appl. Math. Comput. 346, 319–335 (2019)

    MathSciNet  MATH  Google Scholar 

  24. R.W. Lynch, A method for choosing a tension factor for spline under tension interpolation. M.Sc. Thesis. Univ. of Texas at Austin (1982)

  25. M.A. Navascués, Fractal polynomial interpolation. Z. Anal. Anwendungen. 24(2), 401–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. M.A. Navascués, P. Viswanathan, A.K.B. Chand, M.V. Sebastián, S.K. Katiyar, Fractal bases for banach spaces of smooth functions. Bull. Aust. Math. Soc. 92(3), 405–419 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Passow, J.A. Roulier, Monotone and convex spline interpolation. SIAM J. Numer. Anal. 14, 904–907 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. S. Pruess, Properties of splines in tension. J. Approx. Theory 17, 86–96 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. K.M. Redyy, A.K.B. Chand, Constrained univariate and bivariate rational fractal interpolation. Int. J. Comput. Methods Eng. Sci. Mech. 20(5), 404–422 (2019)

    Article  MathSciNet  Google Scholar 

  30. N.S. Sapidis, P.D. Kaklis, T.A. Loukakis, A method for computing the tension parameters in convexity preserving spline-in-tension interpolation. Numer. Math. 54, 179–192 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. L.L. Schumaker, On shape preserving quadratic spline interpolation. SIAM J. Numer. Anal. 20, 854–864 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. D.G. Schweikert, An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Späth, Spline Algorithms for Curves and Surfaces (Utilitas Mathematica Pub. Inc., Winnipeg, 1974)

    MATH  Google Scholar 

  34. Vijay, A.K.B. Chand, Zipper fractal functions with variable scalings. Adv. Theory Nonlinear Anal. Appl. 6(4), 481–501 (2022)

  35. Vijay, N. Vijender, A.K.B. Chand, Generalized zipper fractal approximation and parameter identification problems. Comput. Appl. Math. 41, Article number: 155 (2022). https://doi.org/10.1007/s40314-022-01862-x

  36. P. Viswanathan, A.K.B. Chand, \(\alpha\)-Fractal rational splines for constrained interpolation. Electron. Trans. Numer. Anal. 41, 420–442 (2014)

    MathSciNet  MATH  Google Scholar 

  37. H.Y. Wang, J.S. Yu, Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. L.L. Yan, Cubic trigonometric nonuniform spline curves and surfaces. Math. Probl. Eng. (2016). https://doi.org/10.1155/2016/7067408

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

AKB Chand would like to acknowledge ICSR, IIT Madras for the funding support from the IoE research project [Project Number = SB20210848MAMHRD 008558].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay.

Additional information

Framework of Fractals in Data Analysis: Theory and Interpretation. Guest editors: Santo Banerjee, A. Gowrisankar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay, Chand, A.K.B. Rational quadratic trigonometric spline fractal interpolation functions with variable scalings. Eur. Phys. J. Spec. Top. 232, 1001–1013 (2023). https://doi.org/10.1140/epjs/s11734-023-00780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00780-1

Navigation