Skip to main content
Log in

Rhythmogenesis in the mean field model of the neuron–glial network

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Despite the fact that the phenomenon of bursting activity is important for functioning of living neural networks, the mechanisms of its origin are still not clear. In this paper, we propose a new phenomenological model that can explain the mechanisms of the formation of bursting activity based on short-term synaptic plasticity, recurrent connections, and neuron–glial interactions. We show that neuron–glial interactions can induce bursting activity. The bifurcation scenarios of emergence of bursting activity are in the focus of the paper. Proposed study is important for understanding the complex dynamics of neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Such transitions occur during the “blue sky catastrophe” bifurcation [35,36,37] and have been considered, incl. in the context of applications in neurodynamics [38].

References

  1. R. Segev, I. Baruchi, E. Hulata, E. Ben-Jacob, Phys. Rev. Lett. 92, 118102 (2004)

    Article  ADS  Google Scholar 

  2. E. Hulata, I. Baruchi, R. Segev, Y. Shapira, E. Ben-Jacob, Phys. Rev. Lett. 92, 198105 (2004)

    Article  ADS  Google Scholar 

  3. M. Meister, R.O. Wong, D.A. Baylor, C.J. Shatz, Science 252, 939 (1991)

    Article  ADS  Google Scholar 

  4. R. Krahe, F. Gabbiani, Nat. Rev. Neurosci. 5, 13 (2004)

    Article  Google Scholar 

  5. E. Salinas, T.J. Sejnowski, Nat. Rev. Neurosci. 2, 539 (2001)

    Article  Google Scholar 

  6. N. Axmacher, F. Mormann, G. Fernández, C.E. Elger, J. Fell, Brain Res. Rev. 52, 170 (2006)

    Article  Google Scholar 

  7. D.A. Wagenaar, J. Pine, S.M. Potter, BMC Neurosci. 7, 1 (2006)

    Article  Google Scholar 

  8. D. Ito, H. Tamate, M. Nagayama, T. Uchida, S.N. Kudoh, K. Gohara, Neuroscience 171, 50 (2010)

    Article  Google Scholar 

  9. M. Ivenshitz, M. Segal, J. Neurophysiol. 104, 1052 (2010)

    Article  Google Scholar 

  10. N.R. Wilson, M.T. Ty, D.E. Ingber, M. Sur, G. Liu, J. Neurosci. 27, 13581 (2007)

    Article  Google Scholar 

  11. E. Biffi, G. Regalia, A. Menegon, G. Ferrigno, A. Pedrocchi, PLoS One 8, e83899 (2013)

    Article  ADS  Google Scholar 

  12. J. Van Pelt, P.S. Wolters, M.A. Corner, W.L. Rutten, G.J. Ramakers, IEEE Trans. Biomed. Eng. 51, 2051 (2004)

    Article  Google Scholar 

  13. Y. Penn, M. Segal, E. Moses, Proc. Natl. Acad. Sci. 113, 3341 (2016)

    Article  ADS  Google Scholar 

  14. I. Baruchi, E. Ben-Jacob, Phys. Rev. E 75, 050901 (2007)

    Article  ADS  Google Scholar 

  15. T. Masquelier, G. Deco, PLoS One 8, e75824 (2013)

    Article  ADS  Google Scholar 

  16. N. Maheswaranathan, S. Ferrari, A.M. VanDongen, C.S. Henriquez, Front. Comput. Neurosci. 6, 15 (2012)

    Article  Google Scholar 

  17. H. Markram, M. Tsodyks, Nature 382, 807 (1996)

    Article  ADS  Google Scholar 

  18. D.M. Blitz, K.A. Foster, W.G. Regehr, Nat. Rev. Neurosci. 5, 630 (2004)

    Article  Google Scholar 

  19. M.V. Tsodyks, H. Markram, Proc. Natl. Acad. Sci. 94, 719 (1997)

    Article  ADS  Google Scholar 

  20. A.M. Thomson, J. Deuchars, Trends Neurosci. 17, 119 (1994)

    Article  Google Scholar 

  21. A. Citri, R.C. Malenka, Neuropsychopharmacology 33, 18 (2008)

    Article  Google Scholar 

  22. R.S. Zucker, W.G. Regehr et al., Annu. Rev. Physiol. 64, 355 (2002)

    Article  Google Scholar 

  23. Y. Wang, H. Markram, P.H. Goodman, T.K. Berger, J. Ma, P.S. Goldman-Rakic, Nat. Neurosci. 9, 534 (2006)

    Article  Google Scholar 

  24. J. Sibille, J. Zapata, J. Teillon, N. Rouach, Front. Cell. Neurosci. 9, 189 (2015)

    Article  Google Scholar 

  25. P.G. Haydon, M. Nedergaard, Cold Spring Harb. Perspect. Biol. 7, a020438 (2015)

    Article  Google Scholar 

  26. M.M. Halassa, P.G. Haydon, Annu. Rev. Physiol. 72, 335 (2010)

    Article  Google Scholar 

  27. R. Jolivet, J.S. Coggan, I. Allaman, P.J. Magistretti, PLoS Comput. Biol. 11, e1004036 (2015)

    Article  ADS  Google Scholar 

  28. A. Araque, V. Parpura, R.P. Sanzgiri, P.G. Haydon, Eur. J. Neurosci. 10, 2129 (1998)

    Article  Google Scholar 

  29. A. Araque, V. Parpura, R.P. Sanzgiri, P.G. Haydon, Trends Neurosci. 22, 208 (1999)

    Article  Google Scholar 

  30. G. Mongillo, O. Barak, M. Tsodyks, Science 319, 1543 (2008)

    Article  ADS  Google Scholar 

  31. M. Tsodyks, K. Pawelzik, H. Markram, Neural Comput. 10, 821 (1998)

    Article  Google Scholar 

  32. I.A. Lazarevich, S. Stasenko, V.B. Kazantsev, JETP Lett. 105, 210 (2017)

    Article  ADS  Google Scholar 

  33. S.Y. Gordleeva, S.V. Stasenko, A.V. Semyanov, A.E. Dityatev, V.B. Kazantsev, Front. Comput. Neurosci. 6, 92 (2012)

    Article  Google Scholar 

  34. A. Dhooge, W. Govaerts, Y.A. Kuznetsov, H.G.E. Meijer, B. Sautois, Math. Comput. Model. Dyn. Syst. 14, 147 (2008)

    Article  MathSciNet  Google Scholar 

  35. J. Palis, C. Pugh, Dynamical Systems-Warwick 1974 (Springer, Berlin, 1975), pp.345–353

    Book  Google Scholar 

  36. D.V. Turaev, L.P. Shilnikov, Blue sky catastrophes, in Doklady Akademii Nauk, vol. 342, (Russian Academy of Sciences, Moscow, 1995), pp.596–599

    Google Scholar 

  37. P.V. Kuptsov, S.P. Kuznetsov, N.V. Stankevich, Regul. Chaotic Dyn. 22, 551 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Shilnikov, G. Cymbalyuk, Phys. Rev. Lett. 94, 048101 (2005)

    Article  ADS  Google Scholar 

  39. Y. Mi, M. Katkov, M. Tsodyks, Neuron 93, 323 (2017)

    Article  Google Scholar 

  40. J.M. Cortes, M. Desroches, S. Rodrigues, R. Veltz, M.A. Muñoz, T.J. Sejnowski, Proc. Natl. Acad. Sci. 110, 16610 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. Stasenko (analytical derivation of the extended TM model) thanks Russian Science Foundation grant # 19-72-10128. N. Barabash and T. Levanova (numerical and analytical studies) thank Russian Science Foundation grant # 22-12-00348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Levanova.

Ethics declarations

Conflict of interest

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabash, N., Levanova, T. & Stasenko, S. Rhythmogenesis in the mean field model of the neuron–glial network. Eur. Phys. J. Spec. Top. 232, 529–534 (2023). https://doi.org/10.1140/epjs/s11734-023-00778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00778-9

Navigation