Skip to main content
Log in

Air-photonics based terahertz source and detection system

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Two-color air plasma-based broadband terahertz (THz) generation and subsequent air-biased coherent detection (ABCD) of the THz field are presented. Both source and detection systems are characterized experimentally and numerically, yielding excellent agreement of measured and simulated signals. We reveal that it is crucial to model the whole optical setup and include the various pump distortions, like temporal and spatial walk-off as well as ellipticity of polarization, in order to interpret the experimental measurements correctly. Moreover, it turns out that geometrical effects in the ABCD scheme shape the recorded THz spectra and need to be taken into account. We confirm that THz electric fields with peak amplitude in the MV/cm range and large spectral bandwidth are produced, allowing us to demonstrate THz spectroscopy with molecular samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. For our laser configuration only oxygen molecules, which have the lowest ionization potential of main air constituents, get ionized.

References

  1. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)

    ADS  Google Scholar 

  2. A. Redo-Sanchez, N. Laman, B. Schulkin, T. Tongue, Review of terahertz technology readiness assessment and applications. J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013)

    Google Scholar 

  3. Y. Zhang, K. Li, H. Zhao, Intense terahertz radiation: generation and application. Front. Optoelectron. 14(1), 4–36 (2021)

    Google Scholar 

  4. C. Yu, S.T. Fan, Y.W. Sun, E. Pickwell-Macpherson, The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2, 33–45 (2012)

    Google Scholar 

  5. L. Bergé, K. Kaltenecker, S. Engelbrecht, A. Nguyen, S. Skupin, L. Merlat, B. Fischer, B. Zhou, I. Thiele, P.U. Jepsen, Terahertz spectroscopy from air plasmas created by two-color femtosecond laser pulses: the ALTESSE project. Eur. Phys. Lett. 126(2), 24001 (2019)

    Google Scholar 

  6. R. Gente, M. Koch, Monitoring leaf water content with THz and sub-THz waves 11, 15 (2015)

  7. P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A.Y. Nikitin, G. Shamuilov, Z. Tibai, V. Zhaunerchyk, V. Goryashko, Matter manipulation with extreme terahertz light: progress in the enabling THz technology 838–837, 1–74 (2022)

  8. F. Novelli, B. Guchhait, M. Havenith, Towards intense THz spectroscopy on water: characterization of optical rectification by GaP, OH1, and DSTMS at OPA wavelengths. Materials 13(6), 1311 (2020)

    ADS  Google Scholar 

  9. X. Li, T. Qiu, J. Zhang, E. Baldini, J. Lu, A.M. Rappe, K.A. Nelson, Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO\(_{3}\). Science 364(6445), 1079–1082 (2019)

    ADS  Google Scholar 

  10. E.A. Nanni, W.R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R.J. Dwayne Miller, F.X. Kärtner, Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015)

    ADS  Google Scholar 

  11. J.L. LaRue, T. Katayama, A. Lindenberg, A.S. Fisher, H. Öström, A. Nilsson, H. Ogasawara, THz-pulse-induced selective catalytic co oxidation on ru. Phys. Rev. Lett. 115, 036103 (2015)

    ADS  Google Scholar 

  12. A. Vella, J. Houard, L. Arnoldi, M. Tang, M. Boudant, A. Ayoub, A. Normand, G. Da Costa, A. Hideur, High-resolution terahertz-driven atom probe tomography. Sci. Adv. 7(7), 7259 (2021)

    ADS  Google Scholar 

  13. P.U. Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging - modern techniques and applications. Laser Photonics Rev. 5(1), 124–166 (2011)

    ADS  Google Scholar 

  14. L. Xie, Y. Yao, Y. Ying, The application of terahertz spectroscopy to protein detection: a review. Appl. Spectrosc. Rev. 49(6), 448–461 (2014)

    ADS  Google Scholar 

  15. J. Neu, C.A. Schmuttenmaer, Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124(23), 231101 (2018)

    Article  ADS  Google Scholar 

  16. M. Hangyo, M. Tani, T. Nagashima, Terahertz time-domain spectroscopy of solids: a review. Int. J. Infrar. Millim. Waves 26(12), 1661–1690 (2005)

    ADS  Google Scholar 

  17. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, P.U. Jepsen, Chemical recognition in terahertz time-domain spectroscopy and imaging. Semicond. Sci. Technol. 20(7), 246–253 (2005)

    ADS  Google Scholar 

  18. P. Bawuah, J.A. Zeitler, Advances in terahertz time-domain spectroscopy of pharmaceutical solids: a review. TrAC Trends Anal. Chem. 139, 116272 (2021)

    Google Scholar 

  19. H.A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, T. Ozaki, Intense terahertz radiation and their applications. J. Opt. 18(9), 093004 (2016)

    ADS  Google Scholar 

  20. D.J. Cook, R.M. Hochstrasser, Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 25(16), 1210–1212 (2000)

    ADS  Google Scholar 

  21. M. Kress, T. Löffler, S. Eden, M. Thomson, H.G. Roskos, Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Opt. Lett. 29(10), 1120–1122 (2004)

    ADS  Google Scholar 

  22. K.Y. Kim, J.H. Glownia, A.J. Taylor, G. Rodriguez, Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 15(8), 4577–4584 (2007)

    ADS  Google Scholar 

  23. K.Y. Kim, A.J. Taylor, J.H. Glownia, G. Rodriguez, Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nat. Photonics 2(10), 605–609 (2008)

    Google Scholar 

  24. E. Matsubara, M. Nagai, M. Ashida, Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Appl. Phys. Lett. 101(1), 011105 (2012)

    ADS  Google Scholar 

  25. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap’’. Appl. Phys. Lett. 92(1), 011131 (2008)

    ADS  Google Scholar 

  26. I.-C. Ho, X. Guo, X.-C. Zhang, Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Opt. Express 18(3), 2872–2883 (2010)

    ADS  Google Scholar 

  27. E. Prost, V. Loriot, E. Constant, I. Compagnon, L. Bergé, F. Lépine, S. Skupin, Air-photonics terahertz platform with versatile micro-controller based interface and data acquisition. Rev. Sci. Instrum. 93(3), 033004 (2022)

    ADS  Google Scholar 

  28. I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, T. Elsaesser, Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Phys. Rev. Lett. 105, 053903 (2010)

    ADS  Google Scholar 

  29. J. Dai, X. Xie, X.-C. Zhang, Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97, 103903 (2006)

    Article  ADS  Google Scholar 

  30. X. Lu, N. Karpowicz, X.-C. Zhang, Broadband terahertz detection with selected gases. In: Advances in Optical Sciences Congress, p. 4. Optica Publishing Group (2009)

  31. K.J. Kaltenecker, E.J.R. Kelleher, B. Zhou, P.U. Jepsen, Attenuation of THz beams: a “how to’’ tutorial. J. Infrar. Millim. Terahertz Waves 40(8), 878–904 (2019)

    Google Scholar 

  32. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, P.U. Jepsen, Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide. Opt. Express 20(8), 8344–8355 (2012)

    ADS  Google Scholar 

  33. M. Naftaly, R. Dudley, Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Opt. Lett. 34(8), 1213–1215 (2009)

    ADS  Google Scholar 

  34. M. Kolesik, J.V. Moloney, M. Mlejnek, Unidirectional optical pulse propagation equation. Phys. Rev. Lett. 89, 283902 (2002)

    ADS  Google Scholar 

  35. M. Kolesik, J.V. Moloney, Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys. Rev. E 70, 036604 (2004)

    ADS  Google Scholar 

  36. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Optical ultrashort filaments in weakly-ionized, optically-transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007)

    ADS  Google Scholar 

  37. L. Bergé, S. Skupin, Few-cycle light bullets created by femtosecond filaments. Phys. Rev. Lett. 100, 113902 (2008)

    ADS  Google Scholar 

  38. I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, T. Elsaesser, Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Phys. Rev. Lett. 105, 053903 (2010)

    ADS  Google Scholar 

  39. C. Tailliez, A. Stathopulos, S. Skupin, D. Buožius, I. Babushkin, V. Vaičaitis, L. Bergé, Terahertz pulse generation by two-color laser fields with circular polarization. New J. Phys. 22, 103038 (2020)

    ADS  Google Scholar 

  40. A. Nguyen, P. González de Alaiza Martínez, J. Déchard, I. Thiele, I. Babushkin, S. Skupin, L. Bergé, Spectral dynamics of THz pulses generated by two-color laser filaments in air: the role of Kerr nonlinearities and pump wavelength. Opt. Express 25, 4720 (2017)

    ADS  Google Scholar 

  41. A. Nguyen, K.J. Kaltenecker, J.-C. Delagnes, B. Zhou, E. Cormier, N. Fedorov, R. Bouillaud, D. Descamps, I. Thiele, S. Skupin, P.U. Jepsen, L. Bergé, Wavelength scaling of terahertz pulse energies delivered by two-color air plasmas. Opt. Lett. 44(6), 1488–1491 (2019)

    ADS  Google Scholar 

  42. G. Tamošauskas, G. Beresnevičius, D. Gadonas, A. Dubietis, Transmittance and phase matching of BBO crystal in the 3–5 \(\mu\)m range and its application for the characterization of mid-infrared laser pulses. Opt. Mater. Express 8(6), 1410–1418 (2018)

    ADS  Google Scholar 

  43. G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163(1), 95–102 (1999)

    ADS  Google Scholar 

  44. Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M.D. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, U. Morgner, Y. Chen, O. Kosareva, A. Savel’ev, Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air. Appl. Phys. Lett. 113(24), 241103 (2018)

    ADS  Google Scholar 

  45. P. Klarskov, A.C. Strikwerda, K. Iwaszczuk, P.U. Jepsen, Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma. New J. Phys. 15(7), 075012 (2013)

    ADS  Google Scholar 

  46. T.I. Oh, Y.S. You, N. Jhajj, E.W. Rosenthal, H.M. Milchberg, K.Y. Kim, Intense terahertz generation in two-color laser filamentation: energy scaling with terawatt laser systems. New J. Phys. 15(7), 075002 (2013)

    ADS  Google Scholar 

  47. V.A. Andreeva, O.G. Kosareva, N.A. Panov, D.E. Shipilo, P.M. Solyankin, M.N. Esaulkov, P. Alaiza Martínez, A.P. Shkurinov, V.A. Makarov, L. Bergé, S.L. Chin, Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett. 116, (2016)

    ADS  Google Scholar 

  48. D.E. Shipilo, N.A. Panov, I.A. Nikolaeva, A.A. Ushakov, P.A. Chizhov, K.A. Mamaeva, V.V. Bukin, S.V. Garnov, O.G. Kosareva, Low-frequency content of THz emission from two-color femtosecond filament. Photonics 9(1) (2022)

  49. I.E. Gordon, L.S. Rothman, R.J. Hargreaves, R. Hashemi, E.V. Karlovets, F.M. Skinner, E.K. Conway, C. Hill, R.V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, A. Coustenis, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, E.J. Mlawer, A.V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, E.M. Adkins, A. Baker, A. Barbe, E. Cané, A.G. Császár, A. Dudaryonok, O. Egorov, A.J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T.J. Lee, D.A. Long, A.A. Lukashevskaya, O.M. Lyulin, V.Y. Makhnev, W. Matt, S.T. Massie, M. Melosso, S.N. Mikhailenko, D. Mondelain, H.S.P. Müller, O.V. Naumenko, A. Perrin, O.L. Polyansky, E. Raddaoui, P.L. Raston, Z.D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D.W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S.A. Tashkun, J.V. Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S.N. Yurchenko, The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 107949 (2021)

  50. F. Ardana-Lamas, C. Erny, A.G. Stepanov, I. Gorgisyan, P. Jranić, R. Abela, C.P. Hauri, Temporal characterization of individual harmonics of an attosecond pulse train by THz streaking. Phys. Rev. A 93, 043838 (2016)

    ADS  Google Scholar 

  51. L. Xu, I. Tutunnikov, E. Gershnabel, Y. Prior, I.S. Averbukh, Long-lasting molecular orientation induced by a single terahertz pulse. Phys. Rev. Lett. 125, 013201 (2020)

    ADS  Google Scholar 

  52. A. Tcypkin, M. Zhukova, M. Melnik, I. Vorontsova, M. Kulya, S. Putilin, S. Kozlov, S. Choudhary, R.W. Boyd, Giant third-order nonlinear response of liquids at terahertz frequencies. Phys. Rev. Appl. 15, 054009 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Moge, I. Aguili, F. Khalid Balyos and C. Clavier for technical support. We thank P. U. Jepsen and B. Zhou from the Technical University of Danemark for fruitful discussions. We acknowledge financial support from CNRS and the ANR ALTESSE2 (ANR-19-ASMA-0007) project. S. Skupin thanks the Qatar National Research Fund (NPRP 12S-0205-190047) for support. Numerical simulations were performed using resources at Grand Équipement National De Calcul Intensif (GENCI) (A0100507594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilien Prost.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prost, E., Loriot, V., Constant, E. et al. Air-photonics based terahertz source and detection system. Eur. Phys. J. Spec. Top. 232, 2157–2166 (2023). https://doi.org/10.1140/epjs/s11734-022-00748-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00748-7

Navigation