Skip to main content
Log in

Linearity of Air-Biased Coherent Detection for Terahertz Time-Domain Spectroscopy

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The performance of air-biased coherent detection (ABCD) in a broadband two-color laser-induced air plasma system for terahertz time-domain spectroscopy (THz-TDS) has been investigated. Fundamental parameters of the ABCD detection, including signal-to-noise ratio (SNR), dynamic range (DR), and linearity of detection have been characterized. Moreover, the performance of a photomultiplier tube (PMT) and an avalanche photodiode (APD) as photodetector in the ABCD have been compared. We have observed nonlinear behavior of PMT detector, which leads to artificial gain factor in TDS spectroscopy. The APD turns out to have superior linearity and three times higher dynamic compared to the PMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Dai, B. Clough, I. C. Ho, L. Xiaofei, L. Jingle, and Z. Xi-Cheng, “Recent Progresses in Terahertz Wave Air Photonics,” Terahertz Science and Technology, IEEE Transactions on, vol. 1, pp. 274–281, 2011.

  2. M. D. Thomson, V. Blank, and H. G. Roskos, “Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields,” Optics Express, vol. 18, pp. 23173–23182, Oct 2010.

  3. E. Matsubara, M. Nagai, and M. Ashida, “Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 f. pulses,” Applied Physics Letters, vol. 101, pp. 011105–4, 2012.

    Article  Google Scholar 

  4. X. Xie, J. M. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Physical Review Letters, vol. 96, p. 075005, Feb 2006.

  5. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Optics Letters, vol. 25, pp. 1210–1212, Aug 2000.

  6. K.-Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Optics Express, vol. 15, pp. 4577–4584, 2007.

    Article  Google Scholar 

  7. M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguère, et al., “Wavelength Scaling of Terahertz Generation by Gas Ionization,” Physical Review Letters, vol. 110, p. 253901, 06/17/ 2013.

  8. P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New Journal of Physics, vol. 15, p. 075012, 2013.

    Article  Google Scholar 

  9. Y. S. You, T. I. Oh, and K. Y. Kim, “Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments,” Physical Review Letters, vol. 109, p. 183902, 2012.

  10. J. M. Dai, N. Karpowicz, and X. C. Zhang, “Coherent Polarization Control of Terahertz Waves Generated from Two-Color Laser-Induced Gas Plasma,” Physical Review Letters, vol. 103, p. 023001, Jul 2009.

  11. Y. S. You, T. I. Oh, and K.-Y. Kim, “Mechanism of elliptically polarized terahertz generation in two-color laser filamentation,” Optics Letters, vol. 38, pp. 1034–1036, 2013/04/01 2013.

  12. N. Karpowicz, J. M. Dai, X. F. Lu, Y. Q. Chen, M. Yamaguchi, H. W. Zhao, et al., “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Applied Physics Letters, vol. 92, p. 011131, Jan 2008.

  13. X. F. Lu, N. Karpowicz, and X. C. Zhang, “Broadband terahertz detection with selected gases,” Journal of the Optical Society of America B-Optical Physics, vol. 26, pp. A66-A73, Sep 2009.

  14. X. Lu and X.-C. Zhang, “Balanced terahertz wave air-biased-coherent-detection,” Applied Physics Letters, vol. 98, p. 151111, 2011.

    Article  Google Scholar 

  15. Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, et al., “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Applied Physics Letters, vol. 101, p. 081119, 2012.

    Article  Google Scholar 

  16. Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Applied Physics Letters, vol. 67, pp. 3523–3525, Dec 1995.

  17. A. Nahata, D. H. Auston, T. F. Heinz, and C. J. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Applied Physics Letters, vol. 68, pp. 150–152, Jan 1996.

  18. P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Physical Review E, vol. 53, pp. R3052-R3054, Apr 1996.

  19. X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, et al., “Terahertz optical rectification from a nonlinear organic crystal,” Applied Physics Letters, vol. 61, pp. 3080–3082, 1992.

    Article  Google Scholar 

  20. A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Optics Letters, vol. 33, pp. 2767–2769, Dec 2008.

  21. I. C. Ho, X. Guo, and X. C. Zhang, “Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy,” Optics Express, vol. 18, pp. 2872–2883, 2010/02/01 2010.

  22. I. C. Ho and X.-C. Zhang, “Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics,” Frontiers of Optoelectronics, vol. 7, pp. 220–242, 2014/06/01 2014.

  23. T. Wang, M. Zalkovskij, K. Iwaszczuk, A. V. Lavrinenko, G. V. Naik, J. Kim, et al., “Ultrabroadband terahertz conductivity of highly doped ZnO and ITO,” Optical Materials Express, vol. 5, pp. 566–574, 2015/03/01 2015.

  24. M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, et al., “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Applied Physics Letters, vol. 100, p. 031901, 2012.

    Article  Google Scholar 

  25. D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct Observation of Sub-100 fs Mobile Charge Generation in a Polymer-Fullerene Film,” Physical Review Letters, vol. 108, p. 056603, 2012.

  26. F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics,” Optics Express, vol. 22, pp. 12475–12485, 2014/05/19 2014.

  27. T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband THz Time-Domain Spectroscopy of a Free-Flowing Water Film,” Terahertz Science and Technology, IEEE Transactions on, vol. 4, pp. 425–431, 2014.

  28. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, et al., “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Optics Express, vol. 20, pp. 28249–28256, 2012.

    Article  Google Scholar 

  29. K. S. Reichel, K. Iwaszczuk, P. U. Jepsen, R. Mendis, and D. M. Mittleman, “In situ spectroscopic characterization of a terahertz resonant cavity,” Optica, vol. 1, pp. 272–275, 2014/11/20 2014.

  30. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X. C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Applied Physics Letters, vol. 99, p. 071113, 2011.

    Article  Google Scholar 

  31. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nature Photonics, vol. 2, pp. 605–609, Oct 2008.

  32. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X. C. Zhang, and P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Optics Express, vol. 20, pp. 8344–8355, 2012.

    Article  Google Scholar 

  33. J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Physical Review Letters, vol. 97, p. 103903, Sep 2006.

  34. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” Journal of the Optical Society of America B, vol. 7, pp. 2006–2015, 1990.

    Article  Google Scholar 

  35. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Journal of the Optical Society of America B, vol. 21, pp. 1379–1386, 2004/07/01 2004.

  36. T. T. Abebe, I. Krzysztof, Z. Maksim, C. S. Andrew, and U. J. Peter, “Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array,” New Journal of Physics, vol. 17, p. 043002, 2015.

    Article  Google Scholar 

  37. P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Optics Express, vol. 18, pp. 15338–15348, 2010.

    Article  Google Scholar 

  38. F. D’Angelo, S. Parekh, M. Bonn, and D. Turchinovich, “Self-referenced transient THz spectroscopy with ABCD detection,” in CLEO: 2015, San Jose, California, 2015, p. STu4H.1.

  39. J. Zhang, “Polarization-dependent study of THz air-biased coherent detection,” Optics Letters, vol. 39, pp. 4096–4099, 2014/07/15 2014.

  40. L. Zhang, H. Zhong, K. Mu, C. Zhang, and Y. Zhao, “Phase characterization in broadband THz wave detection through field-induced second harmonic generation,” Optics Express, vol. 20, pp. 75–80, 2012/01/02 2012.

  41. D. G. Cooke, P. U. Jepsen, J. Y. Lek, Y. M. Lam, F. Sy, and M. M. Dignam, “Picosecond dynamics of internal exciton transitions in CdSe nanorods,” Physical Review B, vol. 88, p. 241307, 2013.

    Article  Google Scholar 

  42. C. S. Wang, J. M. Chen, R. Becker, and A. Zdetsis, “Second order Raman spectrum and phonon density of states of silicon,” Physics Letters A, vol. 44, pp. 517–518, 1973.

    Article  Google Scholar 

  43. S. Wei and M. Y. Chou, “Phonon dispersions of silicon and germanium from first-principles calculations,” Physical Review B, vol. 50, pp. 2221–2226, 1994.

    Article  Google Scholar 

  44. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Optics Letters, vol. 30, pp. 29–31, Jan 2005.

  45. M. Naftaly and R. Dudley, “Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers,” Optics Letters, vol. 34, pp. 1213–1215, 2009/04/15 2009.

Download references

Acknowledgments

This work was supported by the Danish Council for Independent Research under FNU Project THz-BREW, FTP Project HI-TERA, and FTP Postdoc Project 64092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Iwaszczuk, K., Wrisberg, E.A. et al. Linearity of Air-Biased Coherent Detection for Terahertz Time-Domain Spectroscopy. J Infrared Milli Terahz Waves 37, 592–604 (2016). https://doi.org/10.1007/s10762-015-0242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0242-9

Keywords

Navigation