Skip to main content
Log in

When switching makes impossible synchronization possible

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Synchronization of dynamical networks is of great significance in diverse scientific fields. In this paper, the focus is on the networks in which the synchronization stability region is bounded. We represent that blinking of determined links can lead to reaching a synchronous state for specific asynchronous networks. The requisite for the primary network is that it must have only one normalized coupling parameter (the first or the last) out of the stability region found by the master stability function. Then, the proper links that their substitution causes the other coupling parameter (the last or the first) to fall out of the stability region should be recognized. Finally, switching the identified links periodically can synchronize the network. This phenomenon is represented on two networks of Rӧssler and Lorenz oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statements

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93–153 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. D. Dudkowski, K. Czołczyński, T. Kapitaniak, Mech. Syst. Signal Process. 166, 108446 (2022)

    Article  Google Scholar 

  3. M. Shafiei, S. Jafari, F. Parastesh, M. Ozer, T. Kapitaniak, M. Perc, Commun. Nonlinear Sci. Numer. Simul. 84, 105175 (2020)

    Article  MathSciNet  Google Scholar 

  4. S.N. Chowdhury, S. Majhi, M. Ozer, D. Ghosh, M. Perc, New J. Phys. 21, 073048 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  5. B. Karimi-Rahjerdi, R. Ramamoorthy, F. Nazarimehr, K. Rajagopal, S. Jafari, I. Hussain, Int. J. Bifurcation Chaos 32, 2250098 (2022)

    Article  ADS  Google Scholar 

  6. C. Babiloni, R. Lizio, N. Marzano, P. Capotosto, A. Soricelli, A.I. Triggiani, S. Cordone, L. Gesualdo, C. Del Percio, Int. J. Psychophysiol. 103, 88–102 (2016)

    Article  Google Scholar 

  7. A. Oswal, P. Brown, V. Litvak, Curr. Opin. Neurol. 26, 662–670 (2013)

    Article  Google Scholar 

  8. Y. Tang, F. Qian, H. Gao, J. Kurths, Annu. Rev. Control 38, 184–198 (2014)

    Article  Google Scholar 

  9. I.Z. Kiss, Curr. Opin. Chem. Eng. 21, 1–9 (2018)

    Article  Google Scholar 

  10. J. Mei, M. Jiang, W. Xu, B. Wang, Commun. Nonlinear Sci. Numer. Simul. 18, 2462–2478 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Li, X. Gao, R. Li, Appl. Math. Comput. 367, 124779 (2020)

    Article  MathSciNet  Google Scholar 

  12. K. Rajagopal, M. Tuna, A. Karthikeyan, İ Koyuncu, P. Duraisamy, A. Akgul, Euro. Phys. J. Spec. Top. 228, 2065–2080 (2019)

    Article  ADS  Google Scholar 

  13. K. Rajagopal, S. Vaidyanathan, A. Karthikeyan, A. Srinivasan, Alexandria Engin. J. 57, 683–694 (2018)

    Article  Google Scholar 

  14. A.E. Motter, C. Zhou, J. Kurths, EPL (Europhys. Lett.) 69, 334 (2005)

    Article  ADS  Google Scholar 

  15. X. Wang, Y.-C. Lai, C.H. Lai, Phys. Rev. E 75, 056205 (2007)

    Article  ADS  Google Scholar 

  16. H. Taher, S. Olmi, E. Schöll, Phys. Rev. E 100, 062306 (2019)

    Article  ADS  Google Scholar 

  17. S. Martineau, T. Saffold, T.T. Chang, H. Ronellenfitsch, Phys. Rev. Lett. 128, 098301 (2022)

    Article  ADS  Google Scholar 

  18. I.V. Belykh, V.N. Belykh, M. Hasler, Physica D 195, 188–206 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Porfiri, F. Fiorilli, Chaos Solit. Fractals 41, 245–262 (2009)

    Article  ADS  Google Scholar 

  20. D. Ghosh, M. Frasca, A. Rizzo, S. Majhi, S. Rakshit, K. Alfaro-Bittner, S. Boccaletti, Phys. Rep. 949, 1–63 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  21. F. Parastesh, C.-Y. Chen, H. Azarnoush, S. Jafari, B. Hatef, Euro. Phys. J. Spec. Top. 228, 2465–2474 (2019)

    Article  ADS  Google Scholar 

  22. A. Bahramian, F. Parastesh, V.-T. Pham, T. Kapitaniak, S. Jafari, M. Perc, Chaos 31, 033138 (2021)

    Article  ADS  Google Scholar 

  23. D.J. Stilwell, E.M. Bollt, D.G. Roberson, SIAM J. Appl. Dyn. Syst. 5, 140–156 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. V. Kohar, P. Ji, A. Choudhary, S. Sinha, J. Kurths, Phys. Rev. E 90, 022812 (2014)

    Article  ADS  Google Scholar 

  25. R. Jeter, I. Belykh, IEEE Trans. Circuits Syst. I Regul. Pap. 62, 1260–1269 (2015)

    Article  MathSciNet  Google Scholar 

  26. S. Rakshit, S. Majhi, B.K. Bera, S. Sinha, D. Ghosh, Phys. Rev. E 96, 062308 (2017)

    Article  ADS  Google Scholar 

  27. S. Majhi, D. Ghosh, Chaos 27, 053115 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Parastesh, K. Rajagopal, S. Jafari, M. Perc, E. Schöll, Phys. Rev. E 105, 054304 (2022)

    Article  ADS  Google Scholar 

  29. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  30. L. Huang, Q. Chen, Y.-C. Lai, L.M. Pecora, Phys. Rev. E 80, 036204 (2009)

    Article  ADS  Google Scholar 

  31. J. Sawicki, I. Omelchenko, A. Zakharova, E. Schöll, Phys. Rev. E 98, 062224 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Parastesh.

Additional information

Collective behavior of nonlinear dynamical oscillators. Guest editors: Sajad Jafari, Bocheng Bao, Christos Volos, Fahimeh Nazarimehr, Han Bao.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moalemi, T., Parastesh, F. & Kapitaniak, T. When switching makes impossible synchronization possible. Eur. Phys. J. Spec. Top. 231, 3961–3969 (2022). https://doi.org/10.1140/epjs/s11734-022-00692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00692-6

Navigation