Skip to main content
Log in

Synchronization and different patterns in a network of diffusively coupled elegant Wang–Zhang–Bao circuits

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Synchronization in coupled oscillators is of high importance in secure communication and information processing. Due to this reason, a significant number of studies have been performed to investigate the synchronization state in coupled circuits. Diffusive coupling is the simplest connection between the oscillators, which can be implemented through a variable resistor between two variables of two circuits. The Chua’s circuit is the most famous chaotic circuit whose dynamics have been investigated in many studies. However, Wang–Zhang–Bao (WZB) is another chaotic circuit that can exhibit exciting behaviors such as bistability. Thus, this study aims to investigate the cooperative dynamics of the WZB circuit in its elegant parameter values. To this issue, first, we explored the dynamic behavior of the elegant WZB circuit using the bifurcation diagrams, the Lyapunov exponents, and the basins of attraction. Based on the results, we found the range of the bifurcation parameter and the initial conditions wherein the system is bistable. Subsequently, setting the parameters in the monostable region, we studied the synchronization state of two diffusively coupled WZB circuits analytically and numerically. Consequently, we used master stability functions and temporally averaged synchronization error as the analytical and numerical tools to explore the synchronization state. Then we numerically examined the synchronization state in a network of 100 nonlocally coupled WZB oscillators. As a result, we found imperfect chimera and phase synchronization in the studied network before getting synchronized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Rajagopal, S. Kacar, Z. Wei, P. Duraisamy, T. Kifle, A. Karthikeyan, Dynamical investigation and chaotic associated behaviors of memristor Chua’s circuit with a non-ideal voltage-controlled memristor and its application to voice encryption. AEU Int. J. Electron. Commun. 107, 183–191 (2019)

    Google Scholar 

  2. M.Z. De la Hoz, L. Acho, Y. Vidal, A modified Chua chaotic oscillator and its application to secure communications. Appl. Math. Comput. 247, 712–722 (2014)

    MathSciNet  MATH  Google Scholar 

  3. L. Fortuna, M. Frasca, M.G. Xibilia, Chua’s Circuit Implementations: Yesterday, Today and Tomorrow (World Scientific, Singapore, 2009)

    Google Scholar 

  4. M. Chen, Q. Xu, Y. Lin, B. Bao, Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn. 87(2), 789–802 (2017)

    Google Scholar 

  5. M. Chen, M. Sun, H. Bao, Y. Hu, B. Bao, Flux–charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2020)

    Google Scholar 

  6. M. Chen, M. Li, Q. Yu, B. Bao, Q. Xu, J. Wang, Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81(1), 215–226 (2015)

    MathSciNet  MATH  Google Scholar 

  7. B.-C. Bao, P. Jiang, Q. Xu, M. Chen, Hidden attractors in a practical Chua’s circuit based on a modified Chua’s diode. Electron. Lett. 52(1), 23–25 (2016)

    ADS  Google Scholar 

  8. J.R. Piper, J.C. Sprott, Simple autonomous chaotic circuits. IEEE Trans. Circuits Syst. II Express Briefs 57(9), 730–734 (2010)

    Google Scholar 

  9. P. Ketthong, W. San-Um, B. Srisuchinwong, M. Tachibana, A simple current-reversible chaotic jerk circuit using inherent tanh(x) of an opamp. IEICE Electron. Express 14(17), 20170192–20170192 (2017)

    Google Scholar 

  10. N. Wang, G. Zhang, H. Bao, A Simple autonomous chaotic circuit with dead-zone nonlinearity. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3502–3506 (2020)

    Google Scholar 

  11. J. Petrzela, L. Polak, Minimal realizations of autonomous chaotic oscillators based on trans-immittance filters. IEEE Access 7, 17561–17577 (2019)

    Google Scholar 

  12. H. Wu, B. Bao, Z. Liu, Q. Xu, P. Jiang, Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83(1), 893–903 (2016)

    MathSciNet  Google Scholar 

  13. K. Thamilmaran, M. Lakshmanan, Classification of bifurcations and routes to chaos in a variant of Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 12(04), 783–813 (2002)

    MathSciNet  MATH  Google Scholar 

  14. J.-M. Ginoux, B. Muthuswamy, R. Meucci, S. Euzzor, A. Di Garbo, K. Ganesan, A physical memristor based Muthuswamy–Chua–Ginoux system. Sci. Rep. 10(1), 1–10 (2020)

    Google Scholar 

  15. Z. Njitacke, T. Fozin, L.K. Kengne, G. Leutcho, E.M. Kengne, J. Kengne, Multistability and its annihilation in the chua’s oscillator with piecewise-linear nonlinearity. Chaos Theory Appl. 2(2), 77–89 (2020)

    Google Scholar 

  16. B.C. Bao, Q. Xu, H. Bao, M. Chen, Extreme multistability in a memristive circuit. Electron. Lett. 52(12), 1008–1010 (2016)

    ADS  Google Scholar 

  17. M. Guo et al., Multistability in a physical memristor-based modified Chua’s circuit. Chaos 29(4), 043114 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  18. T. FonzinFozin et al., "On the dynamics of a simplified canonical Chua’s oscillator with smooth hyperbolic sine nonlinearity: hyperchaos, multistability and multistability control. Chaos 29(11), 113105 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  19. S.N. Chowdhury, S. Majhi, M. Ozer, D. Ghosh, M. Perc, Synchronization to extreme events in moving agents. New J Phys 21(7), 073048 (2019)

    MathSciNet  Google Scholar 

  20. D. Ghosh et al., The synchronized dynamics of time-varying networks. Phys. Rep. 949, 1–63 (2022)

    MathSciNet  MATH  ADS  Google Scholar 

  21. B. Ramakrishnan, M. Mehrabbeik, F. Parastesh, K. Rajagopal, S. Jafari, A new memristive neuron map model and its network’s dynamics under electrochemical coupling. Electronics 11(1), 153 (2022)

    Google Scholar 

  22. F. Parastesh, M. Mehrabbeik, K. Rajagopal, S. Jafari, M. Perc, Synchronization in Hindmarsh-Rose neurons subject to higher-order interactions. Chaos 32(1), 013125 (2022)

    MathSciNet  ADS  Google Scholar 

  23. X. Sun, M. Perc, J. Kurths, Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Chaos 27(5), 053113 (2017)

    MathSciNet  ADS  Google Scholar 

  24. S. Majhi, D. Ghosh, Alternating chimeras in networks of ephaptically coupled bursting neurons. Chaos 28(8), 083113 (2018)

    MathSciNet  ADS  Google Scholar 

  25. F. Parastesh et al., Chimeras. Phys. Rep. 898, 1–114 (2021)

    MathSciNet  MATH  ADS  Google Scholar 

  26. M. Mehrabbeik, F. Parastesh, J. Ramadoss, K. Rajagopal, H. Namazi, S. Jafari, Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Math. Biosci. Eng. 18(6), 9394–9409 (2021)

    MATH  Google Scholar 

  27. H. Lin et al., An extremely simple multiwing chaotic system: dynamics analysis, encryption application, and hardware implementation. IEEE Trans. Ind. Electron. 68(12), 12708–12719 (2020)

    Google Scholar 

  28. U.E. Kocamaz, S. Çiçek, Y. Uyaroğlu, Secure communication with chaos and electronic circuit design using passivity-based synchronization. J. Circuits Syst. Comput. 27(04), 1850057 (2018)

    Google Scholar 

  29. A. Khitun et al., Inductively coupled circuits with spin wave bus for information processing. J. Nanoelectron. Optoelectron. 3(1), 24–34 (2008)

    Google Scholar 

  30. L.O. Chua, L. Kocarev, K. Eckert, M. Itoh, Experimental chaos synchronization in Chua’s circuit. Int. J. Bifurc. Chaos 2(03), 705–708 (1992)

    MATH  Google Scholar 

  31. A. Buscarino, L. Fortuna, M. Frasca, G. Sciuto, Chua’s circuits synchronization with diffusive coupling: new results. Int. J. Bifurc. Chaos 19(09), 3103–3107 (2009)

    Google Scholar 

  32. Z. Yao, J. Ma, Y. Yao, C. Wang, Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96(1), 205–217 (2019)

    MATH  Google Scholar 

  33. X. Zhang, C. Wang, J. Ma, G. Ren, Control and synchronization in nonlinear circuits by using a thermistor. Mod. Phys. Lett. B 34(25), 2050267 (2020)

    MathSciNet  ADS  Google Scholar 

  34. T. Singla, N. Pawar, P. Parmananda, Exploring the dynamics of conjugate coupled Chua circuits: simulations and experiments. Phys. Rev. E 83(2), 026210 (2011)

    ADS  Google Scholar 

  35. S.K. Dana, B. Blasius, J. Kurths, Experimental evidence of anomalous phase synchronization in two diffusively coupled Chua oscillators. Chaos 16(2), 023111 (2006)

    MATH  ADS  Google Scholar 

  36. S.S. Muni, A. Provata, Chimera states in ring–star network of chua circuits. Nonlinear Dyn. 101(4), 2509–2521 (2020)

    Google Scholar 

  37. J.C. Sprott, W.J.-C. Thio, Elegant Circuits: Simple Chaotic Oscillators (World Scientific, Singapore, 2020)

    MATH  Google Scholar 

  38. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    MathSciNet  MATH  ADS  Google Scholar 

  39. J.C. Sprott, A proposed standard for the publication of new chaotic systems. Int. J. Bifurc. Chaos 21(09), 2391–2394 (2011)

    Google Scholar 

  40. L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)

    ADS  Google Scholar 

  41. L. Huang, Q. Chen, Y.-C. Lai, L.M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E 80(3), 036204 (2009)

    ADS  Google Scholar 

  42. J. Sawicki, I. Omelchenko, A. Zakharova, E. Schöll, Delay controls chimera relay synchronization in multiplex networks. Phys. Rev. E 98(6), 062224 (2018)

    ADS  Google Scholar 

  43. M. Shafiei, F. Parastesh, M. Jalili, S. Jafari, M. Perc, M. Slavinec, Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks. Eur. Phys. J. B 92(2), 36 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Natural Science Foundation of Changzhou College of Information Technology, China, Grant No. CXZK202102Y; and the Design and Development of Intelligent Workshop Production Information Cloud Platform, CCIT, Grant No. KYPT202103G. This work is funded by the Design and Development of Intelligent Workshop Production Information Cloud Platform, CCIT, Grant No. KYPT202103G, Center for Nonlinear Systems, Chennai Institute of Technology, India vide funding number CIT/CNS/2022/RD/006. This work is supported by Al-mustaqbal university college.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet-Thanh Pham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Collective Behavior of Nonlinear Dynamical Oscillators. Guest editors: Sajad Jafari, Bocheng Bao, Christos Volos, Fahimeh Nazarimehr, Han Bao.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Ramakrishnan, B., Falah, M.W. et al. Synchronization and different patterns in a network of diffusively coupled elegant Wang–Zhang–Bao circuits. Eur. Phys. J. Spec. Top. 231, 3987–3997 (2022). https://doi.org/10.1140/epjs/s11734-022-00690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00690-8

Navigation