Skip to main content
Log in

Ab initio nonlinear optics in solids: linear electro-optic effect and electric-field induced second-harmonic generation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Second-harmonic generation (SHG), linear electro-optic effect (LEO) and electric-field induced second-harmonic generation (EFISH) are nonlinear optical processes with important applications in optoelectronics and photovoltaics. SHG and LEO are second-order nonlinear optical processes described by second-order susceptibility. Instead, EFISH is a third-order nonlinear optical process described by third-order susceptibility. LEO and EFISH are only observed in the presence of a static electric field. These nonlinear processes are very sensitive to the symmetry of the systems. In particular, LEO is usually observed through a change in the dielectric properties of the material while EFISH can be used to generate a “second harmonic” response in centrosymmetric material. In this work, we present a first-principle formalism to calculate second- and third-order susceptibility for LEO and EFISH. LEO is studied for GaAs semiconductor and compared with the dielectric properties of this material. We also present how it is possible for LEO to include the ionic contribution to the second-order macroscopic susceptibility. Concerning EFISH we present for the first time the theory we developed in the framework of TDDFT to calculate this nonlinear optical process. Our approach permits to obtain an expression for EFISH which does not contain the mathematical divergences in the frequency-dependent second-order susceptibility that caused until now many difficulties for numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availibility statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y.R. Shen, The principles of nonlinear optics (Wiley-Interscience, New York, 1984)

    Google Scholar 

  2. N. Bloembergen, Nonlinear optics (Benjamin Press, New York, 1965)

    MATH  Google Scholar 

  3. L.G. Kaake, A. Jailaubekov, K.J. Williams, X.Y. Zhu, Probing ultrafast charge separation at organic donor/acceptor interfaces by a femtosecond electric field meter. Appl. Phys. Lett. 99(8), 083307 (2011)

    Article  ADS  Google Scholar 

  4. I.H. Choi, M.S. Kim, C. Kang, J.S. Lee, Ultrafast real-time tracing of surface electric field generated via hot electron transport in polar semiconductors. Appl. Surf. Sci. 571, 151279 (2022)

    Article  Google Scholar 

  5. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, R.P.S. Wabnitz, L. Pavesi, Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater. 11, 148–154 (2012)

    Article  ADS  Google Scholar 

  6. M. Bertocchi, E. Luppi, E. Degoli, V. Véniard, S. Ossicini, Defects and strain enhancements of second-harmonic generation in Si/Ge superlattices. J. Chem. Phys. 140(5), 21405 (2014)

    Google Scholar 

  7. M. Bertocchi, E. Luppi, E. Degoli, V. Véniard, S. Ossicini, Large crystal local-field effects in second-harmonic generation of a Si/CaF\({}_{2}\) interface: an ab initio study. Phys. Rev. B 86, 035309 (2012)

    Article  ADS  Google Scholar 

  8. E. Luppi, E. Degoli, M. Bertocchi, S. Ossicini, V. Véniard, Strain-designed strategy to induce and enhance second-harmonic generation in centrosymmetric and noncentrosymmetric materials. Phys. Rev. B 92, 075204 (2015)

    Article  ADS  Google Scholar 

  9. G.T. Reed, G. Mashanovich, F.Y. Gardes, D.J. Thomson, Silicon optical modulators. Nat. Photon. 4, 518 (2010)

    Article  ADS  Google Scholar 

  10. J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, D. Marris-Morini, Giant electro-optic effect in Ge/SiGe coupled quantum wells. Sci. Rep. 5, 15398 (2015)

    Article  ADS  Google Scholar 

  11. M. Berciano, G. Marcaud, P. Damas, X.L. Roux, P. Crozat, C.A. Ramos, D.P. Galacho, D. Benedikovic, D. Marris-Morini, E. Cassan, L. Vivien, Fast linear electro-optic effect in a centrosymmetric semiconductor. Commun. Phys. 1(1), 64 (2018)

    Article  Google Scholar 

  12. K. Liu, C.R. Ye, S. Khan, V.J. Sorger, Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photon. Rev. 9(2), 172–194 (2015)

    Article  ADS  Google Scholar 

  13. R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, Nature 441, 199202 (2006)

    Article  Google Scholar 

  14. C. Castellan, A. Trenti, C. Vecchi, A. Marchesini, M. Mancinelli, M. Ghulinyan, G. Pucker, L. Pavesi, On the origin of second harmonic generation in silicon waveguides with silicon nitride cladding. Sci. Rep. 9(1), 1088 (2019)

    Article  ADS  Google Scholar 

  15. L.F. Lastras-Martinez, M. Chavira-Rodriguez, A. Lastras-Martinez, R.E. Balderas-Navarro, Phys. Rev. B 66, 075315 (2002)

    Article  ADS  Google Scholar 

  16. L.F. Lastras-Martinez, J.M. Flores-Camacho, A. Lastras-Martinez, R.E. Balderas-Navarro, M. Cardona, Phys. Rev. Lett. 96, 047402 (2006)

    Article  ADS  Google Scholar 

  17. W. Ndebeka, P. Neethling, E. Rohwer, C. Steenkamp, J. Bergmann, H. Stafast, Interband and free charge carrier absorption in silicon at 800 nm: experiments and model calculations. Appl. Phys. B 123 (2017)

  18. W.I. Ndebeka, P.H. Neethling, E.G. Rohwer, C.M. Steenkamp, H. Stafast, Counter-intuitive strength of electric field induced second harmonic (EFISH) signals at the rear side of thin silicon membranes. J. Opt. Soc. Am. B 37(11), A228–A236 (2020)

    Article  ADS  Google Scholar 

  19. C. Attaccalite, M. Grüning, Nonlinear optics from an ab initio approach by means of the dynamical Berry phase: Application to second- and third-harmonic generation in semiconductors. Phys. Rev. B 88(23), 235113 (2013)

    Article  ADS  Google Scholar 

  20. M. Grüning, D. Sangalli, C. Attaccalite, Dielectrics in a time-dependent electric field: a real-time approach based on density-polarization functional theory. Phys. Rev. B 94(3), 035149 (2016)

    Article  ADS  Google Scholar 

  21. E. Luppi, H. Hübener, V. Véniard, Ab initio second order optics in solids. Phys. Rev. B 82(23), 235201 (2010)

    Article  ADS  Google Scholar 

  22. N. Gauriot, V. Véniard, E. Luppi, Long-range corrected exchange-correlation kernels to describe excitons in second-harmonic generation. J. Chem. Phys. 151(23), 234111 (2019)

    Article  ADS  Google Scholar 

  23. L. Prussel, V. Véniard, Linear electro-optic effect in semiconductors: ab initio description of the electronic contribution. Phys. Rev. B 97, 205201 (2018)

    Article  ADS  Google Scholar 

  24. R. Bavli, Y.B. Band, Relationship between second-harmonic generation and electric-field-induced second-harmonic generation. Phys. Rev. A 43, 507–514 (1991)

    Article  ADS  Google Scholar 

  25. S. Ramasesha, I.D.L. Albert, Model exact study of dc-electric-field-induced second-harmonic-generation coefficients in polyene systems. Phys. Rev. B 42, 8587–8594 (1990)

    Article  ADS  Google Scholar 

  26. A. Alejo-Molina, K. Hingerl, H. Hardhienata, Model of third harmonic generation and electric field induced optical second harmonic using simplified bond-hyperpolarizability model. J. Opt. Soc. Am. B 32(4), 562–570 (2015)

    Article  ADS  Google Scholar 

  27. C. Aversa, J.E. Sipe, Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis. Phys. Rev. B 52(20), 14636–14645 (1995)

    Article  ADS  Google Scholar 

  28. K. Kikuchi, K. Tada, Theory of electric field-induced optical second harmonic generation in semiconductors. Opt. Quant. Electron. 12(3), 199–205 (1980)

    Article  Google Scholar 

  29. N. Suzuki, K. Tada, Elastooptic and electrooptic properties of GaAs.  Jpn. J. Appl. Phys. 23(8R), 1011 (1984)

    Article  ADS  Google Scholar 

  30. G. Irmer, C. Roder, C. Himcinschi, J. Kortus, Raman tensor elements and faust-henry coefficients of wurtzite-type \(\alpha\)-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in \(\alpha\)-GaN? J. Appl. Phys. 116(24), 245702 (2014)

    Article  ADS  Google Scholar 

  31. G. Irmer, C. Roder, C. Himcinschi, J. Kortus, Nonlinear optical coefficients of wurtzite-type \(\alpha\)-GaN determined by Raman spectroscopy. Phys. Rev. B 94(19), 195201 (2016)

    Article  ADS  Google Scholar 

  32. M. Veithen, X. Gonze, P. Ghosez, Nonlinear optical susceptibilities, raman efficiencies, and electro-optical tensors from first-principles density functional perturbation theory. Phys. Rev. B 71(12), 125107 (2005)

    Article  ADS  Google Scholar 

  33. L. Prussel, Ab-initio description of optical nonlinear properties of semiconductors in the presence of an electrostatic field. Ph.D. thesis, Ecole Polytechnique, Université Paris-Saclay (2017). https://pastel.archives-ouvertes.fr/tel-01661472

  34. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009)

    Article  ADS  Google Scholar 

  35. X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, D.C. Allan, A brief introduction to the ABINIT software package. Zeit. Kristallogr. 220, 558–562 (2005)

    Article  Google Scholar 

  36. The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (http://www.abinit.org)

  37. F. Sottile, L. Reining, V. Olevano, The DP code, https://etsf.polytechnique.fr/software/AbInitio/

  38. S. Adachi, GaAs and related materials: bulk Semiconducting and Superlattice properties (World Scientific, Teaneck, 1994)

    Book  Google Scholar 

Download references

Acknowledgements

This work was performed using HPC resources from GENCI-IDRIS Grant 090544.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleonora Luppi or Valérie Véniard.

Additional information

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine, Lionel Poisson.

Appendices

Appendix 1

Writing a time-dependent electric field as

$$\begin{aligned} {\mathbf {E}}(t)={\mathbf {E}}_0\left( e^{-i\omega t}+e^{i\omega t}\right) \end{aligned}$$
(23)

the time-dependent second-order polarization induced by \({\mathbf {E}}(t)\) is

$$\begin{aligned} {\mathbf {P}}^{(2)}(t) &= \chi ^{(2)}{\mathbf {E}} {\mathbf {E}}=\chi ^{(2)}_{\mathrm{SHG}} E_0^2\left( e^{-2i\omega t}+ e^{2i\omega t}\right) \nonumber \\&\quad +2\chi ^{(2)}_{\mathrm{OR}} E_0^2 \end{aligned}$$
(24)

where the second-order susceptibility \(\chi ^{(2)}\) relates the polarization to the electric field. The first term corresponds to the second harmonic generation (SHG) and the second term to the optical rectification (OR).One can define a frequency-dependent SHG an OR polarization as \({\mathbf {P}}^{(2)}_{\mathrm{SHG}}(2\omega )=\chi ^{(2)}_{\mathrm{SHG}} E_0^2\) and \({\mathbf {P}}^{(2)}_{\mathrm{OR}}=2\chi ^{(2)}_{OR} E_0^2\).

In the general case, where the electric field contains two different frequencies,

$$\begin{aligned} {\mathbf {E}}(t)={\mathbf {E}}_{0,1}\left( e^{-i\omega _1t}+e^{i\omega _1t}\right) +{\mathbf {E}}_{0,2}\left( e^{-i\omega _2t}+e^{i\omega _2t}\right) \end{aligned}$$
(25)

the time-dependent second-order polarization becomes

$$\begin{aligned} {\mathbf {P}}^{(2)}(t) &= \chi ^{(2)}_{\mathrm{SHG}} E_{0,1}^2\left( e^{-2i\omega _1t}+e^{2i\omega _1t}\right) \nonumber \\&\quad +\chi ^{(2)}_{\mathrm{SHG}} E_{0,2}^2\left( e^{-2i\omega _2t}+e^{2i\omega _2t}\right) \nonumber \\&\quad +2\chi ^{(2)}_{\mathrm{OR}} E_{0,1}^2+2\chi ^{(2)}_{OR} E_{0,2}^2 \nonumber \\&\quad +2\chi ^{(2)}_{\mathrm{SFG}} E_{0,1}E_{0,2}\left( e^{-i(\omega _1+\omega _2)t}+e^{i(\omega _1+\omega _2)t}\right) \nonumber \\&\quad +2\chi ^{(2)}_{\mathrm{DFG}} E_{0,1}E_{0,2}\left( e^{-i(\omega _1-\omega _2)t}+e^{i(\omega _1-\omega _2)t}\right) \nonumber \\ \end{aligned}$$
(26)

where the last two terms correspond respectively to the sum frequency generation (SFG) and the difference frequency generation (DFG).

For the linear electro-optic effect (LEO), the total field is

$$\begin{aligned} E(t)=E_{0}\left( e^{-i\omega _1t}+e^{i\omega _1t}\right) +E_{dc} \end{aligned}$$
(27)

where \(E_{\mathrm{dc}}=\lim \limits _{\omega \rightarrow 0}E_2(t)=2E_{0,2}\). The polarization corresponding to the linear electro-optic effect is then

$$\begin{aligned} \begin{aligned} P^{(2)}_{\mathrm{LEO}}(t)=2\chi ^{(2)}_{\mathrm{LEO}} E_{0}E_{\mathrm{dc}}\left( e^{-i\omega _1t}+e^{i\omega _1t}\right) \end{aligned} \end{aligned}$$
(28)

One can generalize these conventions to the third order case and we get for the EFISH process

$$\begin{aligned} P^{(3)}_{\mathrm{EFISH}}(t)= 3\chi ^3_{\mathrm{EFISH}} E_{\mathrm{dc}} E_{0}^2\left( e^{-2i\omega t}+e^{2i\omega t}\right) \end{aligned}$$
(29)

Appendix 2

In this Appendix, we present the detailed derivation of the ionic contribution to the LEO susceptibility. The frequency-dependent dielectric tensor depends on the frequency \(\omega\), on the amplitude of the static electric field \({\mathcal {E}}\) and on the ionic displacement induced by the static field \({\mathbf {R}}(\pmb{\mathcal{E}})\). The ionic contribution is given by

$$\begin{aligned}&\frac{{\text {d}} \epsilon ^{\mathrm{ionic}}_{ij}({\mathbf {R}}(\pmb{\mathcal{E}}),\pmb{\mathcal{E}},\omega ) }{d {\mathcal {E}}_{k}}\vert _{{\mathbf {R}}_0,{\mathcal {E}}_{k}=0}\nonumber \\&\quad = \sum _{n\alpha }\frac{\partial \epsilon _{ij}({\mathbf {R}},0,\omega )}{\partial \tau _{n \alpha }}\vert _{{\mathbf {R}}_0} \frac{\partial \tau _{n \alpha } }{\partial {\mathcal {E}}_{k}}\vert _{{\mathcal {E}}_{k}=0} \end{aligned}$$
(30)

The evaluation of \(\frac{\partial \tau _{n \alpha } }{\partial {\mathcal {E}}_{k}}\vert _{{\mathcal {E}}_{k}=0}\) has been proposed in [32]; it is based on the fact that the electric enthalpy \(F(\pmb{\mathcal{E}})\) of a solid in an electric field is obtained by the minimization

$$\begin{aligned} F(\pmb{\mathcal{E}})= \min _{{\mathbf {R}}}F(\pmb{\mathcal{E}}, {\mathbf {R}}(\pmb{\mathcal{E}})) \end{aligned}$$
(31)

Expanding the electric enthalpy in terms of the static field, we get

$$\begin{aligned}&F({\mathbf {R}}(\pmb{\mathcal{E}}), \pmb{\mathcal{E}})=F({\mathbf {R}}(\pmb{\mathcal{E}}), \pmb{\mathcal{E}}=0)-\Omega _0\sum _{k}{\mathcal {P}}_k({\mathbf {R}}(\pmb{\mathcal{E}})){\mathcal {E}}_k \nonumber \\&\quad -\frac{\Omega _0}{2}\sum _{kj}\chi ^{(1)}_{kj}({\mathbf {R}}(\pmb{\mathcal{E}})){\mathcal {E}}_k{\mathcal {E}}_j + \cdots \end{aligned}$$
(32)

and, to first order in terms of \(\pmb{\mathcal{E}}\), the minimization leads to

$$\begin{aligned} \sum _{n'\alpha '}\frac{\partial ^2 F({\mathbf {R}}, {\mathcal {E}}= 0)}{\partial \tau _{n\alpha }\partial \tau _{n'\alpha '}} \vert _{R_0}\frac{\partial \tau _{n'\alpha '}}{\partial {\mathcal {E}}_k}\vert _{{\mathcal {E}}_k=0}= \Omega _0\frac{\partial {\mathcal {P}}_k({\mathbf {R}})}{\partial \tau _{n\alpha }}\vert _{R_0} \end{aligned}$$
(33)

By decomposing \(\tau _{n'\alpha '}\) in the basis of the zone-center phonon-mode eigendisplacements(\({\mathbf {q}}=0\)):

$$\begin{aligned} \tau _{n'\alpha ' }=\sum _m \tau _{m }U_m(n'\alpha ') \end{aligned}$$
(34)

we get

$$\begin{aligned}&\sum _m \frac{\partial \tau _{m } }{\partial {\mathcal {E}}_k} \vert _{{\mathcal {E}}_k=0} \sum _{n'\alpha '}\frac{\partial ^2 F({\mathbf {R}}, {\mathcal {E}}= 0)}{\partial \tau _{n\alpha }\partial \tau _{n'\alpha '}} \vert _{R_0}U_m(n'\alpha ')\nonumber \\&\quad = \Omega _0\frac{\partial {\mathcal {P}}_k({\mathbf {R}})}{\partial \tau _{n\alpha }}\vert _{R_0} \end{aligned}$$
(35)

Multiplying by \(U_p(n\alpha )\) and summing over \(n\alpha\)

$$\begin{aligned}&\sum _m \sum _{n\alpha } \frac{\partial \tau _{m } }{\partial {\mathcal {E}}_k} \vert _{{\mathcal {E}}_k=0} \sum _{n'\alpha '}\frac{\partial ^2 F({\mathbf {R}}, {\mathcal {E}}= 0)}{\partial \tau _{n\alpha }\partial \tau _{n'\alpha '}} \vert _{R_0}U_m(n'\alpha ')U_p(n\alpha )\nonumber \\&\quad = \Omega _0\sum _{n\alpha }\frac{\partial {\mathcal {P}}_k({\mathbf {R}})}{\partial \tau _{n\alpha }}\vert _{R_0}U_p(n\alpha ) \end{aligned}$$
(36)

we finally obtain

$$\begin{aligned} \frac{\partial \tau _{m } }{\partial {\mathcal {E}}_k} \vert _{{\mathcal {E}}_k=0} =\frac{\Omega _0}{\omega ^2_{m}} \sum _{n\alpha }\frac{\partial {\mathcal {P}}_k({\mathbf {R}})}{\partial \tau _{n\alpha }}\vert _{R_0}U_m(n\alpha ) \end{aligned}$$
(37)

where we have used the fact that the second derivative of the enthalpy in Eq. (36) corresponds to the inter-atomic forces \(M_n\) and the normalisation relation for the phonon modes \(\sum _{n\alpha } M_{n} U_{m}(n \alpha )U_p(n\alpha )=\delta _{mp}\).

From Eqs. (30) and (37) and with the definition of the mode polarity, \(p_{mk}=\Omega _0 \sum _{n\alpha }\frac{\partial {\mathcal {P}}_k({\mathbf {R}})}{\partial \tau _{n\alpha }}U_m(n\alpha )\), the ionic contribution becomes

$$\begin{aligned} \frac{{\text {d}} \epsilon ^{ionic}_{ij}({\mathbf {R}}(\pmb{\mathcal{E}}),\pmb{\mathcal{E}},\omega ) }{{\text {d}} {\mathcal {E}}_{k}}\vert _{{\mathbf {R}}_0,{\mathcal {E}}_{k}=0}= \sum _m \frac{p_{mk}}{\omega ^2_{m}} \frac{\partial \epsilon _{ij}({\mathbf {R}},0,\omega )}{\partial \tau _{m}}\vert _{{\mathbf {R}}_0} \end{aligned}$$
(38)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prussel, L., Maji, R., Degoli, E. et al. Ab initio nonlinear optics in solids: linear electro-optic effect and electric-field induced second-harmonic generation. Eur. Phys. J. Spec. Top. 232, 2231–2240 (2023). https://doi.org/10.1140/epjs/s11734-022-00677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00677-5

Navigation