Skip to main content
Log in

All-round: combining laser cutting and edge shaping of glass

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Cutting glass to shape with ultra short laser pulses is nowadays a well established industrial process. Pulses with an elongated straight focal volume (line focus) are used to modify the workpiece throughout its entire depth with one single laser shot. At the same time, processed glass is often required to have a seamed or round edge, which usually requires an extra grinding step. Here we demonstrate that curved line foci can be used to combine cutting and edge shaping of glass sheets in one laser process. We reconsider the Airy-Gauss beam for this purpose, and suggest modifications to the beam profile to avoid unwanted effects, in particular an asymmetric laser modification of the glass sheet. We provide a combined experimental and numerical analysis of the laser process, and show a symmetric convex edge created in a \({920}\,{\upmu }\mathrm{m}\) thick glass sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Deubener, G. Helsch, A. Moiseev, H. Bornhöft, Glasses for solar energy conversion systems. J. Eur. Ceram. Soc. 29, 1203–1210 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.009

    Article  Google Scholar 

  2. J.-S. Park, H. Chae, H.K. Chung, S.I. Lee, Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26, 034001 (2011). https://doi.org/10.1088/0268-1242/26/3/034001

    Article  ADS  Google Scholar 

  3. S. Garner, S. Glaesemann, X. Li, Ultra-slim flexible glass for roll-to-roll electronic device fabrication. Appl. Phys. A 116, 403 (2014). https://doi.org/10.1007/s00339-014-8468-2

    Article  ADS  Google Scholar 

  4. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2(4), 219–225 (2008). https://doi.org/10.1038/nphoton.2008.47

    Article  ADS  Google Scholar 

  5. F. Hendricks, V. Matylitsky, M. Domke, H.P. Huber, Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials. In: Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI, vol. 9740. SPIE (2016), pp. 162–169. https://doi.org/10.1117/12.2214081

  6. R.M. Herman, T.A. Wiggins, Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932–942 (1991). https://doi.org/10.1364/JOSAA.8.000932

    Article  ADS  Google Scholar 

  7. K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, J. Lopez, Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses. Opt. Express 25(26), 33271 (2017). https://doi.org/10.1364/OE.25.033271

    Article  ADS  Google Scholar 

  8. M. Jenne, D.l. Flamm, K. Chen, M. Schäfer, M. Kumkar, S. Nolte, Facilitated glass separation by asymmetric bessel-like beams. Opt. Express 28(5), 6552–6564 (2020). https://doi.org/10.1364/OE.387545

  9. K. Bergner, M. Müller, R. Klas, J. Limpert, S. Nolte, A. Tünnerman, Scaling ultrashort laser pulse induced glass modifications for cleaving applications. Appl. Opt. 57(21), 5941–5947 (2018). https://doi.org/10.1364/AO.57.005941

    Article  ADS  Google Scholar 

  10. A. Feuer, J.-U. Thomas, C. Freitag, R. Weber, T. Graf, Single-pass laser separation of 8 mm thick glass with a millijoule picosecond pulsed Gaussian-Bessel beam. Appl. Phys. A 125(5), 1–6 (2019). https://doi.org/10.1007/s00339-019-2624-7

    Article  Google Scholar 

  11. D. Sohr, J.U. Thomas, S. Skupin, Shaping convex edges in borosilicate glass by single pass perforation with an airy beam. Opt. Lett. 46(10), 2529–2532 (2021). https://doi.org/10.1364/OL.423788

    Article  ADS  Google Scholar 

  12. M.V. Berry, N.L. Balazs, Nonspreading wave packets. Am. J. Phys. 47(3), 264–267 (1979). https://doi.org/10.1119/1.11855

    Article  ADS  Google Scholar 

  13. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating airy beams. Phys. Rev. Lett. 99(21), 213901 (2007). https://doi.org/10.1103/PhysRevLett.99.213901

    Article  ADS  Google Scholar 

  14. Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F.J. Gunn-Moore, D.E.K. Ferrier, T. Vettenburg, K. Dholakia, A compact airy beam light sheet microscope with a tilted cylindrical lens. Biomed. Opt. Express 5(10), 3434–3442 (2014). https://doi.org/10.1364/BOE.5.003434

    Article  Google Scholar 

  15. P. Panagiotopoulos, D.G. Papazoglou, A. Couairon, S. Tzortzakis, Sharply autofocused ring-airy beams transforming into non-linear intense light bullets. Nat. Commun. 4, 2622 (2013). https://doi.org/10.1038/ncomms3622

    Article  ADS  Google Scholar 

  16. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P.A. Lacourt, J.M. Dudley, Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl. Phys. Lett. 101(7), 071110 (2012). https://doi.org/10.1063/1.4745925

    Article  ADS  Google Scholar 

  17. L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P.A. Lacourt, J.M. Dudley, Arbitrary accelerating micron-scale caustic beams in two and three dimensions. Opt. Express 19(17), 16455–16465 (2011). https://doi.org/10.1364/OE.19.016455

    Article  ADS  Google Scholar 

  18. P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, D.N. Christodoulides, Curved plasma channel generation using ultraintense airy beams. Science 324(5924), 229–232 (2009). https://doi.org/10.1126/science.1169544

    Article  ADS  Google Scholar 

  19. N.K. Efremidis, Z. Chen, M. Segev, D.N. Christodoulides, Airy beams and accelerating waves: an overview of recent advances. Optica 6(5), 686 (2019). https://doi.org/10.1364/OPTICA.6.000686

    Article  ADS  Google Scholar 

  20. D.G. Papazoglou, S. Suntsov, D. Abdollahpour, S. Tzortzakis, Tunable intense airy beams and tailored femtosecond laser filaments. Phys. Rev. A 81(6), 061807 (2010). https://doi.org/10.1103/PhysRevA.81.061807

    Article  ADS  Google Scholar 

  21. R.S. Grewal, A. Ghosh, G.K. Samanta: Simultaneous generation of high-power, ultrafast 1d and 2d airy beams and their frequency-doubling characteristics. Opt. Lett. 43(16), 3957–3960 (2018). https://doi.org/10.1364/OL.43.003957

  22. J. Gottmann, Microcutting and hollow 3d microstructures in glasses by in-volume selective laser-induced etching (isle). J. Laser Micro/Nanoeng. 8(1), 15–18 (2013). https://doi.org/10.2961/jlmn.2013.01.0004

    Article  Google Scholar 

  23. S. Matsuo, H. Sumi, S. Kiyama, T. Tomita, S. Hashimoto, Femtosecond laser-assisted etching of pyrex glass with aqueous solution of koh. Appl. Surf. Sci. 255(24), 9758–9760 (2009). https://doi.org/10.1016/j.apsusc.2009.04.065

    Article  ADS  Google Scholar 

  24. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Progr. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  25. O. Dematteo Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. Javaux Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, G. Duchateau, Femtosecond laser pulse train interaction with dielectric materials. Appl. Phys. Lett. 107, 181110 (2015)

    Article  ADS  Google Scholar 

  26. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20(5), 1307–1314 (1965)

    Google Scholar 

  27. P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite et al., Space-time observation of an electron gas in si o 2. Phys. Rev. Lett. 73(14), 1990 (1994). https://doi.org/10.1103/PhysRevLett.73.1990

    Article  ADS  Google Scholar 

  28. C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.P. Colombier, R. Stoian, Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses. High Power Laser Sci. Eng. 4, 1065 (2016). https://doi.org/10.1017/hpl.2016.45

    Article  Google Scholar 

  29. W. Liu, S. Petit, A. Becker, N. Aközbek, C.M. Bowden, S.L. Chin, Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun. 202(1), 189–197 (2002). https://doi.org/10.1016/S0030-4018(01)01698-4

    Article  ADS  Google Scholar 

  30. A. Schmitt-Sody, H.G. Kurz, L. Bergé, S. Skupin, P. Polynkin, Picosecond laser filamentation in air. New J. Phys. 18(9), 093005 (2016). https://doi.org/10.1088/1367-2630/18/9/093005

    Article  ADS  Google Scholar 

  31. U. Eppelt, S. Russ, C. Hartmann, M. Sun, C. Siebert, W. Schulz, Diagnostic and simulation of ps-laser glass cutting. In: International Congress on Applications of Lasers & Electro-Optics, vol. 2012, pp. 835–844 (2012). Laser Institute of America

  32. Y. Hu, G.A. Siviloglou, P. Zhang, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Self-accelerating airy beams: generation, control, and applications. In Nonlinear Photonics and Novel Optical Phenomena, ed. by Z. Chen, R. Morandotti. Springer Series in Optical Sciences, vol. 170 (Springer, New York, 2012), pp. 1–46

  33. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics Wiley Series in Pure and Applied Optics (Wiley-Interscience, Hoboken, 2001). https://doi.org/10.1002/0471213748

    Book  Google Scholar 

  34. D.M. Cottrell, J.A. Davis, T.M. Hazard, Direct generation of accelerating airy beams using a 3/2 phase-only pattern. Opt. Lett. 34(17), 2634–2636 (2009). https://doi.org/10.1364/OL.34.002634

    Article  ADS  Google Scholar 

  35. N.L. Boling, M.D. Crisp, G. Dubé, Laser induced surface damage. Appl. Opt. 12(4), 650 (1973). https://doi.org/10.1364/ao.12.000650

    Article  ADS  Google Scholar 

  36. D. Bischof, M. Kahl, M. Michler, Laser-assisted etching of borosilicate glass in potassium hydroxide. Opt. Mater. Express 11(4), 1185 (2021). https://doi.org/10.1364/OME.417871

    Article  ADS  Google Scholar 

  37. C. Ungaro, A. Liu, Single-pass cutting of glass with a curved edge using ultrafast curving Bessel beams and oblong airy beams. Opt. Laser Technol. 144, 107398 (2021). https://doi.org/10.1016/j.optlastec.2021.107398

    Article  Google Scholar 

  38. D. Flamm, M. Kaiser, M. Feil, M. Kahmann, M. Lang, J. Kleiner, T. Hesse, Protecting the edge: ultrafast laser modified c-shaped glass edges. J. Laser Appl. 34(1), 012014 (2022). https://doi.org/10.2351/7.0000592

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Simulations were performed using HPC resources from GENCI (Grants # A0070506129 and A0080507594). SS acknowledges support by the QNRF (Grant # NPRP 12S-0205-190047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sohr.

Ethics declarations

Conflict of Interest

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohr, D., Thomas, J.U. & Skupin, S. All-round: combining laser cutting and edge shaping of glass. Eur. Phys. J. Spec. Top. 232, 2253–2264 (2023). https://doi.org/10.1140/epjs/s11734-022-00672-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00672-w

Navigation