Skip to main content
Log in

A Raman-delayed nonlinearity for elliptically polarized ultrashort optical pulses

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We address the role of the delayed Kerr nonlinearity associated with stimulated rotational Raman scattering on the propagation of intense ultrashort two-color filaments with elliptical polarization in gases and examine its impact on the generation of optical frequencies as well as terahertz frequencies. We find that in air the nonlinearity associated with stimulated Raman scattering strongly impacts the dynamics of the laser filaments and modifies the overall pulse spectral content. In particular, it alters the THz spectra upon propagation in the filamentation regime. Differences between linearly and circularly polarized two-color pump pulses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, The propagation of powerful femtosecond laser pulses in optical media: Physics, applications, and new challenges. Can. J. Phys. 83, 863 (2005)

    Article  ADS  Google Scholar 

  2. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Optical ultrashort filaments in weakly-ionized, optically-transparent media. Rep. Prog. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  3. J. Kasparian, J.-P. Wolf, Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466 (2008)

    Article  ADS  Google Scholar 

  4. L. Bergé, S. Skupin, Few-cycle light bullets created by femtosecond filaments. Phys. Rev. Lett. 100, 113902 (2008)

    Article  ADS  Google Scholar 

  5. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.B. André, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, L. Wöste, White-light filaments for atmospheric analysis. Science 301, 61 (2003)

    Article  ADS  Google Scholar 

  6. T.-J. Wang, Y. Chen, C. Marceau, F. Théberge, M. Châteauneuf, J. Dubois, S.L. Chin, High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control. Appl. Phys. Lett. 95, 131108 (2009)

    Article  ADS  Google Scholar 

  7. J. Liu, J. Dai, S.L. Chin, X.-C. Zhang, Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photon. 4, 627 (2010)

    Article  ADS  Google Scholar 

  8. L. Bergé, K. Kaltenecker, S. Engelbrecht, A. Nguyen, S. Skupin, L. Merlat, B. Fischer, B. Zhou, I. Thiele, P.U. Jepsen, Terahertz spectroscopy from air plasmas created by two-color femtosecond laser pulses: The ALTESSE project. Eur. Phys. Lett. 126, 24001 (2019)

    Article  Google Scholar 

  9. K.Y. Kim, A.J. Taylor, J.H. Glownia, G. Rodriguez, Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nat. Photon. 2, 605 (2008)

    Article  Google Scholar 

  10. M.D. Thomson, M. Kress, T. Löffler, H.G. Roskos, Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications. Laser Photon. Rev. 1, 349 (2007)

    Article  ADS  Google Scholar 

  11. I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, T. Elsaesser, Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Phys. Rev. Lett. 105, 053903 (2010)

    Article  ADS  Google Scholar 

  12. L. Bergé, S. Skupin, C. Köhler, I. Babushkin, J. Herrmann, 3D numerical simulations of THz generation by two-color laser filaments. Phys. Rev. Lett. 110, 073901 (2013)

    Article  ADS  Google Scholar 

  13. D.J. Cook, R.M. Hochstrasser, Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 25, 1210 (2000)

    Article  ADS  Google Scholar 

  14. A.V. Borodin, N.A. Panov, O.G. Kosareva, V.A. Andreeva, M.N. Esaulkov, V.A. Makarov, A.P. Shkurinov, S.L. Chin, X.-C. Zhang, Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases. Opt. Lett. 38, 1906 (2013)

    Article  ADS  Google Scholar 

  15. V.A. Andreeva, O.G. Kosareva, N.A. Panov, D.E. Shipilo, P.M. Solyankin, M.N. Esaulkov, P. González de Alaiza Martínez, A.P. Shkurinov, V.A. Makarov, L. Bergé, S.L. Chin, Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett. 116, 063902 (2016)

    Article  ADS  Google Scholar 

  16. M. Clerici, M. Peccianti, B.E. Schmidt, L. Caspani, M. Shalaby, M. Giguère, A. Lotti, A. Couairon, F. Légaré, T. Ozaki, D. Faccio, R. Morandotti, Wavelength scaling of terahertz generation by gas ionization. Phys. Rev. Lett. 110, 253901 (2013)

    Article  ADS  Google Scholar 

  17. A. Nguyen, K.J. Kaltenecker, J.-C. Delagnes, B. Zhou, E. Cormier, N. Fedorov, R. Bouillaud, D. Descamps, I. Thiele, S. Skupin, P.U. Jepsen, L. Bergé, Wavelength scaling of terahertz pulse energies delivered by two-color air plasmas. Opt. Lett. 44, 1844 (2019)

    Article  Google Scholar 

  18. P. González de Alaiza Martínez, I. Babushkin, L. Bergé, S. Skupin, E. Cabrera-Granado, C. Köhler, U. Morgner, A. Husakou, J. Herrmann, Boosting terahertz generation in laser-field ionized gases using a sawtooth wave shape. Phys. Rev. Lett. 114, 183901 (2015)

    Article  ADS  Google Scholar 

  19. V. Vaičaitis, O. Balachninaitė, U. Morgner, I. Babushkin, Terahertz radiation generation by three-color laser pulses in air filament. J. Appl. Phys. 125, 173103 (2019)

    Article  ADS  Google Scholar 

  20. J. Dai, N. Karpowicz, X.-C. Zhang, Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 103, 023001 (2009)

    Article  ADS  Google Scholar 

  21. C. Meng, W. Chen, X. Wang, Z. Lü, Y. Huang, J. Liu, D. Zhang, Z. Zhao, J. Yuan, Enhancement of terahertz radiation by using circularly polarized two-color laser fields. Appl. Phys. Lett. 109, 131105 (2016)

    Article  ADS  Google Scholar 

  22. C. Tailliez, A. Stathopulos, S. Skupin, D. Buožius, I. Babushkin, V. Vaičaitis, L. Bergé, Terahertz pulse generation by two-color laser fields with circular polarization. New J. Phys. 22, 103038 (2020)

    Article  ADS  Google Scholar 

  23. J.R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, A. Ting, Stimulated Raman scattering of intense laser pulses in air. Phys. Rev. E 68, 056502 (2003)

    Article  ADS  Google Scholar 

  24. R.W. Boyd (ed.), Nonlinear Optics (Academic Press, San Diego, 1992)

    Google Scholar 

  25. S. Champeaux, L. Bergé, Postionization regimes of femtosecond laser pulses self-channeling in air. Phys. Rev. E 71, 046604 (2005)

    Article  ADS  Google Scholar 

  26. A. Nguyen, P. González de Alaiza Martínez, J. Déchard, I. Thiele, I. Babushkin, S. Skupin, L. Bergé, Spectral dynamics of THz pulses generated by two-color laser filaments in air: the role of Kerr nonlinearities and pump wavelength. Opt. Express 25, 4720 (2017)

    Article  ADS  Google Scholar 

  27. M. Kolesik, J.V. Moloney, Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E 70, 036604 (2004)

    Article  ADS  Google Scholar 

  28. I. Babushkin, S. Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Bergé, J. Herrmann, Tailoring terahertz radiation by controling tunnel photoionization events in gases. New J. Phys. 13, 123029 (2011)

    Article  Google Scholar 

  29. M.V. Ammosov, N.B. Delone, V.P. Kraǐnov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191 (1986)

    ADS  Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon, New-York, 1965)

    MATH  Google Scholar 

  31. P. Sprangle, J.R. Peñano, B. Hafizi, Propagation of intense short laser pulses in the atmosphere. Phys. Rev. E 66, 046418 (2002)

    Article  ADS  Google Scholar 

  32. T.A. Pitts, T.S. Luk, J.K. Gruetzner, T.R. Nelson, A. McPherson, S.M. Cameron, A.C. Bernstein, Propagation of self-focusing laser pulses in atmosphere: experiment versus numerical simulation. J. Opt. Soc. Am. B 21, 2008 (2004)

    Article  ADS  Google Scholar 

  33. M. Kolesik, J.V. Moloney, M. Mlejnek, Unidirectional optical pulse propagation equation. Phys. Rev. Lett. 89, 283902 (2002)

    Article  ADS  Google Scholar 

  34. E.R. Peck, K. Reeder, Dispersion of air. J. Opt. Soc. Am. A 62, 958 (1972)

    Article  ADS  Google Scholar 

  35. S. Zahedpour, J.K. Wahlstrand, H.M. Milchberg, Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths. Opt. Lett. 40, 5794 (2015)

    Article  ADS  Google Scholar 

  36. O.D. Jefimenko, Electricity and Magnetism: An Introduction to the Theory of Electric and Magnetic Fields (Appleton-Century-Crofts, New York, 1966)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Agence Nationale de la Recherche (ANR - ALTESSE: ANR-19-ASMA-0007). Numerical simulations were performed using resources at Grand Équipement National de Calcul Intensif (GENCI) (A0100507594). S. Skupin thanks the Qatar National Research Fund (NPRP 12S-0205-190047) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Stathopulos.

Appendix

Appendix

1.1 The microscopic Raman response

Here we derive the nonlinear polarization vector due to Raman scattering in air molecules, assumed to be only due to the rotations of non-interacting dinitrogen molecules. We shall suppose that \(N_2\) molecules have only three energy levels \(W_1\), \(W_2\) and \(W_3\). The first two levels are rotational states attainable by Stockes scattering, and the third is a virtual level of energy much higher than the other two, such that it cannot be directly excited by the laser, i.e., \(W_3 \gg W_2 - W_1\). We note \(\Omega _1\), \(\Omega _2\) and \(\Omega _3\) the respective natural frequencies of these states and \(\Omega _{nm}=\Omega _n-\Omega _m\). In view of the above hypotheses, one has \(\Omega _{21} \ll \omega _0 \ll \Omega _{32}\).

Let us define \(\psi (t,{\overrightarrow {r}})\) the molecular wave function of dinitrogen. We also note \(H_0\) the unperturbed Hamiltonian and \(V(t,{\overrightarrow { r}}) = -{\overrightarrow {\mu }}\cdot {\overrightarrow {E}} = -\mu _xE_x - \mu _yE_y = V_x + V_y\) the perturbation operator of the Hamiltonian, with \({\overrightarrow {\mu }} = -e{\overrightarrow {r}}\) the dipole moment vector of \(N_2\) molecules. The Schrödinger equation is therefore written:

$$\begin{aligned} (H_0 + V_x + V_y) \psi = i\hbar \frac{\partial \psi }{\partial t}. \end{aligned}$$
(15)

The molecular wave function \(\psi\) is decomposed into the sum of eigenstates of \(H_0\), \(u_n({\overrightarrow {r}})\), where n is an integer between 1 and 3, \(\hbar \Omega _n\) the associated eigenvalues, and \(\langle u_m |u_n \rangle = \delta _{mn}\), with \(\delta _{mn}\) being the Kronecker symbol. Following [23], we substitute

$$\begin{aligned} \psi (t,{\overrightarrow {r}}) = \sum _{n=1}^3 c_n(t)e^{-i\Omega _nt} u_n({\overrightarrow {r}}) \end{aligned}$$
(16)

into Eq. (15) and treat separately each of its contributions defining \(({\overrightarrow {\mu} } \cdot {\overrightarrow {E}})_{mn} \equiv \mu _{mn}^x E_x + \mu _{mn}^y E_y\) with \(\mu _{mn}^{x,y} = \langle u_m |\mu _{x,y} |u_n\rangle\). The time dependent coefficients \(c_n\) must then satisfy

$$\begin{aligned} \frac{\partial c_m(t)}{\partial t} = \frac{i}{\hbar }\sum _{n=1}^3 c_n(t) ({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})_{mn} e^{-i\Omega _{nm}t}\,. \end{aligned}$$
(17)

The microscopic polarization vector \({\overrightarrow {p}}\) is defined as

$$\begin{aligned} \begin{aligned} {\overrightarrow {p}}(t)&= \langle \psi |{\overrightarrow {\mu }} |\psi \rangle \\&= \sum _{m=1}^3 \sum _{n=1}^3 \rho _{nm} e^{i\Omega _{mn}t}\left( {\begin{array}{c}\mu ^x_{mn}\\ \mu ^y_{mn}\end{array}}\right) \,, \end{aligned} \end{aligned}$$
(18)

with \(\rho _{mn} = c_m c_n^*\). By noticing that \(\rho _{nm}^* = \rho _{mn}\), \(\mu _{mn}^{x,y} = (\mu _{nm}^{x,y})^*\) and \(({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})_{mn} = ({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})_{nm}^*\), one gets

$$\begin{aligned} \begin{aligned} \frac{\partial \rho _{nm}}{\partial t} = \frac{i}{\hbar } \sum _{j=1}^3&\left[ \rho _{jm}({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})_{nj}e^{-i\Omega _{jn}t} \right. \\&\left. - \rho _{nj}({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})_{jm}e^{-i\Omega _{mj}t}\right] \,. \end{aligned} \end{aligned}$$
(19)

Similar assumptions as in [23], among which \(\rho _{33} = \mu ^{x,y}_{12} = \mu ^{x,y}_{ii} = 0\) (\(1 \le i \le 3\)), imply that the non-zero \(\mu ^x_{mn}\) (resp. \(\mu ^y_{mn}\)) are all equal and assimilate all the related coefficients \(({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})_{mn}\) to \(({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})\).

Let us now calculate the elements participating in the macroscopic dipole moment. Using the relation Eq. (18), we obtain

$$\begin{aligned} {\overrightarrow {p}}(t) = (\rho _{13}e^{i\Omega _{31}t} + \rho _{32}e^{-i\Omega _{32}t}){\overrightarrow {\mu }} + c.c. \end{aligned}$$
(20)

where \(\rho _{13}\) and \(\rho _{32}\) are governed by Eq. (19).

To integrate the two equations for \(\rho _{13}\) and \(\rho _{32}\), we neglect the time variations of \(\rho _{11}\), \(\rho _{12}\), \(\rho _{21}\) and \(\rho _{22}\) compared to those of \(\rho _{13}\) and \(\rho _{32}\), because \(\Omega _{31} \gg \Omega _{21}\) and \(\Omega _{31} \sim \Omega _{32}\). With initially \(\rho _{13}(t=0) = \rho _{32}(t=0) = 0\), this integration results in

$$\begin{aligned} \rho _{13}(t)&= \frac{({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})}{\hbar \Omega _{31}}\left( \rho _{11}e^{-i\Omega _{31}t} + \rho _{12}e^{-i\Omega _{32}t}\right) \,, \end{aligned}$$
(21)
$$\begin{aligned} \rho _{32}(t)&= \frac{({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})}{\hbar \Omega _{31}}\left( \rho _{12}e^{i\Omega _{31}t} + \rho _{22}e^{i\Omega _{32}t}\right) \,. \end{aligned}$$
(22)

Since \(\rho _{11} + \rho _{22} \simeq 1\) and state 2 remains sparsely populated compared to state 1, we can also assume \(\rho _{11} - \rho _{22} \simeq 1\). \(\rho _{12}\) is thus given by Eq. (19) as

$$\begin{aligned} \frac{\partial \rho _{12}}{\partial t} = -\frac{i ({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})^2}{\hbar ^2\Omega _{31}}e^{-i\Omega _{21}t}\,. \end{aligned}$$
(23)

Following [23], we add an heuristic population decrease of \(\rho _{12}\), related to a decay term with lifetime \(\tau _2\). Introducing \(\tau _1 = \Omega _{21}^{-1}\), we get

$$\begin{aligned} \frac{\partial \rho _{12}}{\partial t} = -\frac{\rho _{12}}{\tau _2} - \frac{i ({\overrightarrow {\mu }} \cdot {\overrightarrow {E}})^2}{\hbar ^2 \Omega _{31}}e^{-i\frac{t}{\tau _1}}\,. \end{aligned}$$
(24)

Using these expressions, we can simplify the nonlinear part of the polarization vector oriented along \({\hat{\mu }}={\overrightarrow {\mu }}/\mu\) to

$$\begin{aligned} {\overrightarrow {p}}_R(t) = \frac{2 \mu ^2}{\hbar \Omega _{31}} ({\hat{\mu }} \cdot {\overrightarrow {E}})\rho _{12}e^{i\Omega _{21}t}{\hat{\mu }} + c.c.\,, \end{aligned}$$
(25)

and finally obtain after solving Eq. (24)

$$\begin{aligned}&{\overrightarrow {p}}_R(t) = \frac{1}{\hbar } \left( \frac{2 \mu ^2 }{\hbar \Omega _{31}}\right) ^2 [{\hat{\mu }} \cdot {\overrightarrow {E}}(t)] \nonumber \\&\quad \times \int ^t_{-\infty } [{\hat{\mu }} \cdot {\overrightarrow {E}}(t')]^2 \sin \!\left( \frac{t-t'}{\tau _1}\right) e^{\frac{t'-t}{\tau _2}} \ dt' {\hat{\mu }}\,. \end{aligned}$$
(26)

Finally let \(\xi\) be the angle between \({\overrightarrow {\mu }}\) and \({\overrightarrow { e}}_x\). To obtain a macroscopic expression of the Raman polarization, it is necessary to average the above relation over all angles \(\xi\) and multiply the expression by the molecular density of the medium \(N_a\). For isotropic air, the angle \(\xi\) is distributed uniformly between 0 and \(2\pi\). The macroscopic Raman polarization is thus given by

$$\begin{aligned} {\overrightarrow {P}}_R(t) = \frac{N_a}{2\pi } \int _0^{2\pi } {\overrightarrow {p}}_R(t, \xi ) d\xi \,. \end{aligned}$$
(27)

After integration, we obtain the final form of the Raman polarization Eq. (5) for a vector laser field. Note that if we set \(E_y = 0\), we recover the standard one-dimensional expression of [23] for a linearly polarized laser pulse.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stathopulos, A., Skupin, S. & Bergé, L. A Raman-delayed nonlinearity for elliptically polarized ultrashort optical pulses. Eur. Phys. J. Spec. Top. 232, 2285–2292 (2023). https://doi.org/10.1140/epjs/s11734-022-00671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00671-x

Navigation