Skip to main content
Log in

Impact of elastic capsules on a solid wall

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Capsules are ubiquitous in medical and biological systems, and other bio-medical industries. Dynamics of capsules in various flow conditions have received significant attention recently. Various numerical, experimental, and analytical studies have given insight into the dependence of capsule dynamics on the membrane and fluid properties. However, impact of capsules on solid walls has been studied scantily in spite of its relevance in many physical and biological systems. We use numerical simulations to study the impact of a spherical capsule on a rigid surface at moderate Weber (We) and Reynolds (Re) numbers. Specifically, we investigate the effect of shear stiffness and area incompressibility of the membrane on the capsule deformation during impact with a rigid surface using the Neo-Hookean and Skalak constitutive models for the membrane. At low We, the maximum deformation of the capsule scales as We\(^{1/2}\). Whereas, at low Reynolds numbers and high Weber numbers, the maximum diameter to which the capsule can spread after impact, deviates from the We\(^{1/2}\) scaling, due to an increase in the viscous dissipation losses during capsule spreading. Interestingly, the scaling at low Re is given by Re\(^{1/5}\) which is also in agreement with that for a liquid droplet. We show that, for low area incompressiblity, Neo-Hookean and Skalak models show similar capsule dynamics. Whereas, for capsules with large area incompressibility and low shear stiffness in the Skalak model, the dynamics is similar to that of Neo-Hookean capsules with large shear stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N.J. Zuidam, V. Nedovic, Encapsulation technologies for active food ingredients and food processing (2010)

  2. G. Ma, Z.-G. Su, Microspheres and microcapsules in biotechnology: design, preparation and applications (2013)

  3. S. Sarkar, Artificial blood. Indian J. Crit. Care Med. 12(3), 140 (2008)

    Article  Google Scholar 

  4. T. Chang, Artificial cells and bioencapsulation in bioartificial organs. Ann. N. Y. Acad. Sci. 831, 249–259 (1997)

    Article  ADS  Google Scholar 

  5. D. Barthes-Biesel, Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48, 25–52 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D. Barthes-Biesel, Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100(4), 831–853 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. D. Barthes-Biesel, A. Diaz, E. Dhenin, Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211–222 (2002)

    Article  ADS  MATH  Google Scholar 

  8. P. Vlahovska, Y.-N. Young, G. Danker, C. Misbah, Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678, 221–247 (2011)

    Article  ADS  MATH  Google Scholar 

  9. E. Lac, D. Barthes-Biesel, N. Pelekasis, J. Tsamopoulos, Spherical capsules in three-dimensional unbounded stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303–334 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. Ramanujan, C. Pozrikidis, Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117–143 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. Kessler, R. Finken, U. Seifert, Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 605, 207–226 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. P. Bagchi, R.M. Kalluri, Dynamics of nonspherical capsules in shear flow. Phys. Rev. E 80(1), 016307 (2009)

    Article  ADS  Google Scholar 

  13. E. Lac, D. Barthès-Biesel, Deformation of a capsule in simple shear flow: effect of membrane prestress. Phys. Fluids 17(7), 072105 (2005)

    Article  ADS  MATH  Google Scholar 

  14. E. Jambon-Puillet, T.J. Jones, P.-T. Brun, Deformation and bursting of elastic capsules impacting a rigid wall. Nat. Phys. 16(5), 585–589 (2020)

    Article  Google Scholar 

  15. D. Bartolo, C. Josserand, D. Bonn, Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329–338 (2005)

    Article  ADS  MATH  Google Scholar 

  16. J. Eggers, M.A. Fontelos, C. Josserand, S. Zaleski, Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22(6), 062101 (2010)

    Article  ADS  MATH  Google Scholar 

  17. S. Mandre, M. Mani, M.P. Brenner, Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102(13), 134502 (2009)

    Article  ADS  Google Scholar 

  18. S. Wildeman, C.W. Visser, C. Sun, D. Lohse, On the spreading of impacting drops. J. Fluid Mech. 805, 636–655 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing\(\ldots \). Annu. Rev. Fluid Mech. 38, 159–192 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. C. Josserand, S.T. Thoroddsen, Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365–391 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J.M. Kolinski, S.M. Rubinstein, S. Mandre, M.P. Brenner, D.A. Weitz, L. Mahadevan, Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108(7), 074503 (2012)

    Article  ADS  Google Scholar 

  22. S.K. Doddi, P. Bagchi, Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int. J. Multiph. Flow 34(10), 966–986 (2008)

    Article  Google Scholar 

  23. S.K. Doddi, P. Bagchi, Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79(4), 046318 (2009)

    Article  ADS  Google Scholar 

  24. X. Li, K. Sarkar, Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane. J. Comput. Phys. 227(10), 4998–5018 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S. Shrivastava, J. Tang, Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J. Strain Anal. Eng. Design 28(1), 31–51 (1993)

    Article  Google Scholar 

  26. R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31(1), 567–603 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. The GTS Library. http://gts.sourceforge.net/

  28. S. Popinet, A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336–358 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. L. Xu, W.W. Zhang, S.R. Nagel, Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94(18), 184505 (2005)

    Article  ADS  Google Scholar 

  30. S. Mandre, M.P. Brenner, The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148–172 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Science and Technology, India for the DST-NSM funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Tomar.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satheesh, K., Tomar, G. Impact of elastic capsules on a solid wall. Eur. Phys. J. Spec. Top. 232, 849–858 (2023). https://doi.org/10.1140/epjs/s11734-022-00660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00660-0

Navigation