Skip to main content
Log in

Attenuation of electromagnetic waves in an unmagnetized collisionless plasma by particle-in-cell method

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

By using particle-in-cell (PIC) simulation method, the evolution of electromagnetic wave (EMW) through an unmagnetized collisionless cold plasma is presented. The effect of plasma sizes on the attenuation rate of electromagnetic wave is investigated. It is found that the larger the plasma size is, the more electromagnetic energy is lost. The attenuation rate of electromagnetic wave with different wavelengths in plasma is also shown, it is obvious that the attenuation rate increases as the wavelength of electromagnetic wave increases, and when wavelength \(\lambda >0.07\) m, the attenuation rate increases slowly and at the end, there is almost no increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

D. N. Gao (2022). “Attenuation of electromagnetic waves in an unmagnetized collisionless plasma by particle-in-cell method”. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Asano, Y. Iwamoto, K. Fukuyama, N. Tamura, S. Namba, IEEE Trans. Plasma Sci. 46, 2626 (2018)

    Article  ADS  Google Scholar 

  2. Y.V. Kovalenko, D.N. Pureskin, V.Y. Savkin, D.V. Senkov, D.V. Yakovlev, Instrum. Exp. Tech. 59, 802 (2016)

    Article  Google Scholar 

  3. K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Compos. Sci. Technol. 66, 576 (2006)

    Article  Google Scholar 

  4. D. Didascalou, J. Maurer, W. Wiesbeck, IEEE Trans. Antennas Propag. 49, 1590 (2001)

    Article  ADS  Google Scholar 

  5. W.Z. Yan, Y. Du, H. Wu, D. Liu, B.I. Wu, Prog. Electromagn. Res. 85, 39 (2008)

    Article  Google Scholar 

  6. M.H. Liu, X.W. Hu, Z.H. Jiang, S. Zhang, C.H. Lan, Y. Pan, Plasma Sour. Sci. Technol. 16, 614 (2007)

    Article  ADS  Google Scholar 

  7. Z.C. Yuan, J.M. Shi, J.C. Wang, B. Xu, Plasma Sci. Technol. 6, 2265 (2004)

    Article  ADS  Google Scholar 

  8. Z.H. Jiang, X.W. Hu, M.H. Liu, C.H. Lan, S. Zhang, Y. He, Y. Pan, Plasma Sour. Sci. Technol. 16, 97 (2007)

    Article  ADS  Google Scholar 

  9. W.C. Mao, G.J. Xu, AIP Adv. 9, 085305 (2019)

    Article  ADS  Google Scholar 

  10. G. Xu, Z. Song, Wave Random Complex 29, 8566 (2018)

    Google Scholar 

  11. N. Shukla, G. Brodin, M. Marklund, P.K. Shukla, L. Stenflo, Phys. Plasmas 16, 072114 (2009)

    Article  ADS  Google Scholar 

  12. H. Li, J. Wu, Z.X. Zhou, C.X. Yuan, Phys. Plasmas 23, 073702 (2016)

    Article  ADS  Google Scholar 

  13. Ch. Rozina, N.L. Tsintsadze, M. Jamil, Phys. Plasmas 23, 072303 (2016)

    Article  ADS  Google Scholar 

  14. L.A. Rios, R.M.O. Galvão, Phys. Plasmas 18, 022311 (2017)

    Article  ADS  Google Scholar 

  15. Z.B. Wang, Q.Y. Nie, B.W. Li, F.R. Kong, Phys. Plasmas 24, 013511 (2017)

    Article  ADS  Google Scholar 

  16. L.J. Guo, L.X. Guo, Phys. Plasmas 24, 042119 (2017)

    Article  ADS  Google Scholar 

  17. L. Dan, L.X. Guo, J.T. Li, W. Chen, X. Yan, Q.Q. Huang, Phys. Plasmas 24, 093703 (2001)

    Article  ADS  Google Scholar 

  18. M. Emamuddin, A.A. Mamun, Phys. Plasmas 24, 052119 (2017)

    Article  ADS  Google Scholar 

  19. D. Levko, L.L. Raja, Phys. Plasmas 24, 043509 (2017)

    Article  ADS  Google Scholar 

  20. Ch. Rozina, N.L. Tsintsadze, M. Madiha, I. Zeba, Phys. Plasmas 24, 053705 (2017)

    Article  ADS  Google Scholar 

  21. S. Cho, Phys. Plasmas 24, 073302 (2017)

    Article  ADS  Google Scholar 

  22. L. Dan, L.X. Guo, J.T. Li, Phys. Plasmas 25, 013707 (2018)

    Article  ADS  Google Scholar 

  23. C.H. Woo, M.H. Woo, Cg.R. Choi, K.W. Min, Phys. Plasmas 26, 042103 (2019)

    Article  ADS  Google Scholar 

  24. Z. Rahmani, H. Moradi, N. Tazimi, Indian J. Phys. 94, 935C946 (2020)

    Article  Google Scholar 

  25. C.H. Jiang, L.H. Wei, G.B. Yang, C. Zhou, Z.Y. Zhao, Earth Planet. Phys. 4, 565 (2020)

    Article  ADS  Google Scholar 

  26. Y.X. Xu, X. Qi, X. Yang, C. Li, X.Y. Zhao, W.S. Duan, L. Yang, Plasma Sour. Sci. Technol. 23, 015002 (2014)

    Article  ADS  Google Scholar 

  27. E.A. Soliman, A. Helaly, A.A. Megahed, Prog. Electromagn. Res. 67, 25–37 (2007)

    Article  Google Scholar 

  28. Y.Y. Zhang, G.J. Xu, Z.Q. Zheng, Wave Random Complex 31, 2466 (2021)

    Article  ADS  Google Scholar 

  29. F.P. Wang, H. Zhang, X.Y. Zhao, Z.Z. Li, W.S. Duan, L. Yang, Eur. Phys. J. D 73, 130 (2019)

    Article  ADS  Google Scholar 

  30. H. Zhang, F.P. Wang, M.M. Lin, X.Y. Zhao, W.S. Duan, L. Yang, Phys. Plasmas 26, 012501 (2019)

    Article  ADS  Google Scholar 

  31. D. Li, Y. H. Chen, J. X. Ma, H. W. Yang. Higher Education Press (2006)

Download references

Acknowledgements

This work was supported by Lanzhou City University Young Teachers Research Funding Project (No. LZCU-QN2018-06), Lanzhou City University Doctoral Research Startup Fund Project (No. LZCU-BS2018-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ning Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, DN., Lin, SM. & Duan, WS. Attenuation of electromagnetic waves in an unmagnetized collisionless plasma by particle-in-cell method. Eur. Phys. J. Spec. Top. 231, 4143–4147 (2022). https://doi.org/10.1140/epjs/s11734-022-00633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00633-3

Navigation