Skip to main content

Advertisement

Log in

One-dimensional particle-in-cell/Monte Carlo collision simulation for investigation of amplitude modulation effects in RF capacitive discharges

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We have investigated the effects of amplitude modulation (AM) discharges especially in differences of AM frequency on plasma parameters such as electric field, electron density, electron temperature, ion energy distribution function (IEDF), and ion angular distribution function (IADF) of capacitively coupled AM discharge Ar plasma using a Particle-in-cell/Monte Carlo collision (PIC-MCC) model. The electron density and the kinetic energy of ions incident on the grounded electrode oscillate periodically with the AM frequency. The oscillation amplitude of the electron density in the central plasma region between the electrodes decreases with increasing the AM frequency above 5 kHz. On the other hand, the peak energy of IEDF decreases with increasing the AM frequency above 500 kHz. Thus, the AM frequency is a good tuning knob to control such plasma parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Puech, J.M. Thevenoud, J.M. Gruffat, N. Launay, N. Arnal, P. Godinat. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 109–114 (2008).

  2. S.S. Kim, S.K. Yong, W. Kim, S. Kang, H.W. Park, K.J. Yoon, D.S. Sheen, S. Lee, C.S. Hwang, Review of semiconductor flash memory devices for material and process issues. Adv Mater. (2022). https://doi.org/10.1002/adma.202200659

    Article  Google Scholar 

  3. A.M. Mahajan, L.S. Patil, J.P. Bange, D.K. Gautam, Surf. Coat. Technol. 183, 295–300 (2004)

    Article  CAS  Google Scholar 

  4. A. Rohatgi, V. Yelundur, J. Jeong, A. Ebong, M.D. Rosenblum, J.I. Hanoka, Sol. Energy Mater. Sol. Cells 74, 117–126 (2002)

    Article  CAS  Google Scholar 

  5. R.L. Puurunen, J. Appl. Phys. 97, 121301 (2005)

    Article  Google Scholar 

  6. P. Diomede, D.J. Economou, V.M. Donnelly, J. Appl. Phys. 109, 083302 (2011)

    Article  Google Scholar 

  7. J.K. Lee, O.V. Manuilenko, N. Yu Babaeva, H.C. Kim, J.W. Shon, Plasma Sources Sci. Technol. 14, 89–97 (2005)

    Article  Google Scholar 

  8. Z. Donko, A. Derzsi, M. Vass, J. Schulze, E. Schuemgel, S. Hamaguchi, Plasma Sources Sci. Technol. 27, 104008 (2018)

    Article  Google Scholar 

  9. T. Kitajima, Y. Takeo, Z.L. Petrovic, T. Makabe, Appl. Phys. Lett. 77, 489 (2000)

    Article  CAS  Google Scholar 

  10. B. Bruneau, T. Novikova, T. Lafleur, J.P. Booth, E.V. Johnson, Plasma Sources Sci. Technol. 23, 065010 (2014)

    Article  Google Scholar 

  11. I. Korolov, Z. Donko, U. Czarnetzki, J. Schulze, J. Phys. D Appl. Phys. 45, 465205 (2012)

    Article  CAS  Google Scholar 

  12. K. Denpoh, Jpn. J. Appl. Phys. 60, 016002 (2021)

    Article  CAS  Google Scholar 

  13. K. Koga, S. Iwashita, M. Shiratani, J. Phys. D 40, 2267 (2007)

    Article  CAS  Google Scholar 

  14. M. Shiratani, K. Koga, S. Iwashita, S. Nunomura, Faraday Discuss 137, 127 (2008)

    Article  CAS  Google Scholar 

  15. K. Kamataki, H. Miyata, K. Koga, G. Uchida, N. Itagaki, M. Shiratani, Appl. Phys. Express 4, 105001 (2011)

    Article  Google Scholar 

  16. K. Kamataki, Y. Morita, M. Shiratani, K. Koga, G. Uchida, N. Itagaki, J. Inst 7, C04017 (2012)

    Google Scholar 

  17. K. Kamataki, K. Abe, A. Yamamoto, I. Nagao, M. Otaka, D. Yamashita, N. Itagaki, T. Okumura, K. Koga, M. Shiratani, S. Tahara, Y. Mizokami, Y. Miyata, K. Tabuchi, T. Tanikuni, S. Hiyama, K. Nagahata, in Proc. of 42nd International Symposium on Dry Process (DPS) G1 (2021).

  18. K. Abe, K. Kamataki, A. Yamamoto, I. Nagao, M. Otaka, D. Yamashita, T. Okumura, N. Yamashita, N. Itagaki, K. Koga, M. Shiratani, Jpn. J. Appl. Phys. 60, 106003 (2022)

    Article  Google Scholar 

  19. Z. Donko, A. Derzsi, M. Vass, B. Horvath, S. Wilczek, B. Hartmann, P. Hartmann, Plasma Sources Sci. Technol. 30, 095017 (2021)

    Article  CAS  Google Scholar 

  20. H.C. Kim, F. Iza, S.S. Yang, M. Radmilovic-Radjenovic, J.K. Lee, J. Phys. D Appl. Phys. 38, R283–R301 (2005)

    Article  CAS  Google Scholar 

  21. PEGASUS Software Inc. http://www.psinc.co.jp/

  22. S. Sharma, A. Sen, N. Sirse, M.M. Turner, A.R. Ellingboe, Phys. Plasmas 25, 080705 (2018)

    Article  Google Scholar 

  23. K. Kamataki, D. Nagamatsu, T. Yang, K. Abe, A. Yamamoto, I. Nagao, T. Arima, M. Otaka, Y. Yamamoto, D. Yamashita, T. Okumura, N. Yamashita, N. Itagaki, K. Koga, M. Shiratani, AIP Adv. 12, 085220 (2022)

    Article  CAS  Google Scholar 

  24. Y. Takao, K. Matsuoka, K. Eriguchi, K. Ono, J. Appl. Phys. 50, 08JC02 (2011)

    Article  Google Scholar 

  25. J.S. Chang, R.M. Hobson, Y. Ichikawa, T. Kaneda. Atomic and Molecular Processes in Ionized Gases (Tokyo Denki University Press, Japan, 1982) pp. 106–116. (Published in Japanese.)

  26. F.F. Chen, Introduction to Plasma Physics (Plenum Publishing Corporation, United States of America, 1974)

    Google Scholar 

  27. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley-Interscience, USA, 2005)

    Book  Google Scholar 

Download references

Acknowledgments

This study was partly supported by JSPS KAKENHI Grant Number JP20H00142.

Funding

Funding was provided Japan Society for the promotion of Science (Grant No.: JP20H00142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iori Nagao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagao, I., Kamataki, K., Yamamoto, A. et al. One-dimensional particle-in-cell/Monte Carlo collision simulation for investigation of amplitude modulation effects in RF capacitive discharges. MRS Advances 7, 911–917 (2022). https://doi.org/10.1557/s43580-022-00417-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00417-w

Navigation