Skip to main content
Log in

Analysis of nanofluid natural convection in a particular shape of a cavity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this study, natural laminar convection of \(\hbox {Al}_{2}\hbox {O}_{3}\)/water nanofluid in a cavity slightly different from shaped H was investigated using the monophasic model. The various parameters of this flow were determined numerically using CFD-Fluent software using the finite-volume method by introducing Boussinesq approximation. The analysis is carried out for three values of the Rayleigh number (10\(^{5}\); 2.3\(\cdot \)10\(^{5}\) and 3.072\(\cdot \)10\(^{5})\) and for three values of the form factor defined for this enclosure (0.2; 0.3 and 0.4). The impact of Rayleigh number, nanofluid concentration and cavity form factor on dynamic and thermal structure of the flow was analyzed. The results are shown in form of streamlines, isotherms, and profiles of velocity, temperature, and Nusselt number. Nusselt number rises with increasing Rayleigh number and nanofluid concentration and decreases with the form factor of the cavity. This study is well developed relative to those carried out before. With using \(\hbox {Al}_{2}\hbox {O}_{3}\) nanofluid, the heat transfer is improved because its thermal conductivity is increased compared to that of the base fluid. Finally, to predict heat transfer inside cavity, correlations for the Nusselt number were proposed for each form factor of the cavity. These correlations are rarely presented in this type of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AR:

Aspect ratio of the cavity

Cp:

Specific heat at constant pressure, J kg\(^{-1}\) K\(^{-1}\)

g:

Gravitational acceleration, m s\(^{-2}\)

h:

Convection heat transfer coefficient W m\(^{-2}\) K\(^{-1}\)

H:

Height of the enclosure, m

K:

Thermal conductivity, W m\(^{-1}\) K\(^{-1}\)

Nu:

Average Nusselt number

P:

Pressure, N m\(^{-2}\)

Ra:

Rayleigh number

T:

Temperature, K

u, v:

Velocity components, m s\(^{-1}\)

\(\alpha \) :

Thermal diffusivity, m\(^{2}\) s\(^{-1}\)

\(\rho \) :

Density, kg m\(^{-3}\)

\(\beta \) :

Coefficient of thermal expansion, K\(^{-1}\)

\(\mu \) :

Dynamic viscosity, kg m\(^{-1}\) s\(^{-1}\)

\(\nu \) :

Kinematic viscosity, m\(^{2}\) s\(^{-1}\)

\(\varphi \) :

Volume fraction, %

\(\psi \) :

Stream function value, m\(^{2}\) s\(^{-1}\)

f:

Fluid

s:

Solid

nf:

Nanofluid

c, f:

Cold and hot wall

max:

Maximum

o:

Reference value

References

  1. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transf. 46, 19 (2003)

    Google Scholar 

  2. R. Mohebbi, M.M. Rashidi, J. Taiwan Inst. Chem. Eng. 72, 70–84 (2017)

  3. N. Makulati, A. Kasaeipoor, M.M. Rashidi, Adv. Powder Technol. 27, 2 (2016)

    Article  Google Scholar 

  4. B. Ghasemi, Numer. Heat. Transf A Appl. 63, 6 (2013)

    Article  Google Scholar 

  5. E. Abu-Nada, Z. Masoud, A. Hijazi, Int. Commun. Heat. Mass. Transf. 35, 5 (2008)

    Article  Google Scholar 

  6. E. Abu-Nada, H.F. Oztop, Int. J. Heat Fluid Flow 30, 4 (2009)

    Google Scholar 

  7. R. Mohebbi, M. Izadi, A.J. Chamkha, Phys. Fluids 29, 12 (2017)

    Article  Google Scholar 

  8. E. Natarajan, T. Basak, S. Roy, Int. J. Heat Mass Transf. 51, 747–756 (2008)

  9. P. Sudarsana Reddy, P. Sreedevi, A.J. Chamkha, Heat Transf. Asian Res. 46(7), 815–839 (2017)

  10. P. Sudarsana Reddy, P. Sreedevi, Int. J. Ambient Energy, 1–11 (2020)

  11. P. Sudarsana Reddy, P. Sreedevi, Chin. J. Phys. 72, 327–344 (2021)

  12. P. Sreedevi, P. Sudarsana Reddy, K.V. Suryanarayana Rao, Wav. Rand. Com. Med. (2021)

  13. M. Hamid, Z.H. Khan, W.A. Khan, R.U. Haq, Phys. Fluids 31, 103607 (2019)

  14. Z.H. Khan, W.A. Khan, R.U. Haq, M. Usman, M. Hamid, Int. Commun. Heat. Mass. Transf. 116, 104640 (2020)

  15. M. Hamid, M. Usman, T. Zubair, R. Haq, W. Wang, Int. J. Heat Mass Transf. 124, 706–714 (2018)

  16. T. Nguyen-Thoi, M. Sheikholeslami, M. Hamid, R. Haq, A. Shafee, Physica A (2019)

  17. J.C. Maxwell, Oxford University Press, Cambridge, 2nd edition (1881)

  18. H.C. Brinkman, J. Chem. Phys. 20, 571–581 (1952)

  19. C.V. Popa, S. Fohanno, G. Polidori, C.T. Nguyen, in 5th European Thermal-Sciences Conference (2008)

  20. Y. Xuan, W. Roetzel, Int. J. Heat Mass Transf. 43, 19 (2000)

    Article  Google Scholar 

  21. F. Keramat, P. Dehghan, M. Mofarahi, C.H. Lee, J. Taiwan Inst. Chem. Eng. 111, 63–72 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Bougoul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmoune, I., Bougoul, S. & Chamkha, A.J. Analysis of nanofluid natural convection in a particular shape of a cavity. Eur. Phys. J. Spec. Top. 231, 2901–2914 (2022). https://doi.org/10.1140/epjs/s11734-022-00588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00588-5

Navigation