Skip to main content
Log in

Microstructural features and piezoelectric properties of spark plasma sintered lead-free \(\hbox {K}_{\mathbf {0.5}}{} \mathbf{Na} _{\mathbf {0.5}}{} \mathbf{NbO} _{\mathbf {3\,}}\) ceramics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

To replace lead containing (Pb, Zr)\(\hbox {TiO}_{3}\) in piezoelectric devices, the (K, Na)\(\hbox {NbO}_{3}\) system has shown great promise but has also encountered versatile properties, due to the volatilization of alkaline elements and difficulties in getting fully dense ceramics. \(\hbox {K}_{0.5}\hbox {Na}_{0.5}\hbox {O}_{3}\) (KNN) powders are prepared by solid-state synthesis with a short-time planetary ball milling and shaped in a series of ceramic pellets using spark plasma sintering technique (SPS), resulting in highly dense ceramics. This sintering process operates in reducing conditions, and post-annealing in oxygen flow is required to recover a good electrical insulator material, to remove the residual strains in the ceramics and to eliminate possible carbon contamination from the graphite die. The structural and microstructural states of the ceramics, observed before and after post treatment, lead to the identification of the major defects encountered during SPS treatment. The resulting piezoelectric functional properties obtained on the series of pellets after oxygen annealing post treatment are measured. This study confirms that SPS technique is really successful in achieving very high and reproducible densification of KNN ceramics. After a post-annealing treatment, substantial piezoelectric properties improvement can be expected in such high densification and defect-free ceramics, suitable for integration in lead-free devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Jaffe, Piezoelectric Ceramics, Academic Press (London, 1971)

  2. EU-Directive 2002/95/EC: RoHS, Off. J. Eur. Union, 46(L37) 19 (2003)

  3. S. Zhang, R. Xia, T.R. Shrout, J. Electroceram. 19, 251 (2007)

    Article  Google Scholar 

  4. H.-C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, W. Gong, K. Wang, Mater. Today 29, 37 (2019)

    Article  Google Scholar 

  5. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  6. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)

    Article  Google Scholar 

  7. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, W. Jo, J. Materiom. 2, 1 (2016)

    Article  ADS  Google Scholar 

  8. J. Rödel, J.-F. Li, MRS Bull. 43, 576 (2018)

    Article  Google Scholar 

  9. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  Google Scholar 

  10. B. Malič, Acta Chim. Slov. 55, 719 (2008)

    Google Scholar 

  11. H. Jiang, T.T. Su, H. Gong, Y.C. Zhai, Cryst. Res. Technol. 46, 85 (2011)

    Article  Google Scholar 

  12. B. Malič, J. Koruza, J. Hreščak, J. Bernard, K. Wang, J. Fisher, A. Benčan, Materials 8, 8117 (2015)

    Article  ADS  Google Scholar 

  13. M. Bah, F. Giovannelli, F. Schoenstein, G. Feuillard, E. Le Clezio, I. Monot-Laffez, AIP Conf. Proc. 1627, 3 (2014)

    Article  ADS  Google Scholar 

  14. M. Bah, F. Giovannelli, R. Retoux, J. Bustillo, E.L. Clezio, I. Monot-Laffez, Cryst. Growth Des. 16, 315 (2016)

    Article  Google Scholar 

  15. J. Koruza, H. Liu, M. Höfling, M.-H. Zhang, P. Veber, J. Mater. Res. 35, 990 (2020)

    Article  ADS  Google Scholar 

  16. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  ADS  Google Scholar 

  17. L. Jiang, J. Xing, Z. Tan, J. Wu, Q. Chen, D. Xiao, J. Zhu, J. Mater. Sci. 51, 4963 (2016)

    Article  ADS  Google Scholar 

  18. D. Lin, K.W. Kwok, H. Tian, H.W.L. Chan, J. Am. Ceram. Soc. 90, 1458 (2007)

    Article  Google Scholar 

  19. V. P, R. Jose, K. V. Saravanan, RSC Adv. 9, 34888 (2019)

  20. L. Wang, W. Ren, P.C. Goh, K. Yao, P. Shi, X. Wu, X. Yao, Thin Solid Films 537, 65 (2013)

    Article  ADS  Google Scholar 

  21. M.-S. Chae, J.-H. Koh, S.-K. Lee, J. Alloys Compd. 587, 729 (2014)

    Article  Google Scholar 

  22. Y.G. Lv, C.L. Wang, J.L. Zhang, L. Wu, M.L. Zhao, J.P. Xu, Mater. Res. Bull. 44, 284 (2009)

    Article  Google Scholar 

  23. D. Lin, Z. Li, S. Zhang, Z. Xu, X. Yao, J. Am. Ceram. Soc. 93, 941 (2010)

    Article  Google Scholar 

  24. F. Jean, F. Schoenstein, M. Zaghrioui, M. Bah, P. Marchet, J. Bustillo, F. Giovannelli, I. Monot-Laffez, Ceram. Int. 44, 9463 (2018)

    Article  Google Scholar 

  25. G.-Z. Zang, X.-J. Yi, J. Du, Y.-F. Wang, Mater. Lett. 64, 1394 (2010)

    Article  Google Scholar 

  26. Y.S. Sung, Appl. Phys. Lett. 105, 142903 (2014)

    Article  ADS  Google Scholar 

  27. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, J. Materiom. 4, 13 (2018)

    Article  Google Scholar 

  28. S. Garroni, N. Senes, A. Iacomini, S. Enzo, G. Mulas, L. Pardo, S. Cuesta-Lopez, Phys. Status Solidi A 215, 1700896 (2018)

    Article  ADS  Google Scholar 

  29. T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater. Sci. 98, 552 (2018)

    Article  Google Scholar 

  30. H. Thong, Z. Xu, C. Zhao, L. Lou, S. Chen, S. Zuo, J. Li, and K. Wang, J. Am. Ceram. Soc. JACE. 16070 (2018)

  31. J.-F. Li, Y. Zhen, B.-P. Zhang, L.-M. Zhang, K. Wang, Ceram. Int. 34, 783 (2008)

    Article  Google Scholar 

  32. N. Liu, K. Wang, J.-F. Li, Z. Liu, J. Am. Ceram. Soc. 92, 1884 (2009)

    Article  Google Scholar 

  33. M. Bah, F. Giovannelli, F. Schoenstein, G. Feuillard, E. Le Clezio, I. Monot-Laffez, Ceram. Int. 40, 7473 (2014)

    Article  Google Scholar 

  34. G. Corapcioglu, M. A. Gulgun, K. Kisslinger, S. Sturm, Shikhar. K. Jha, R. Raj, J. Ceram. Soc. Jpn. 124, 321 (2016)

  35. R. Pinho, A. Tkach, S. Zlotnik, M.E. Costa, J. Noudem, I.M. Reaney, P.M. Vilarinho, Appl. Mater. Today 19, 100566 (2020)

    Article  Google Scholar 

  36. M. Michálek, M. Michálková, G. Blugan, J. Kuebler, J. Eur. Ceram. Soc. 38, 193 (2018)

    Article  Google Scholar 

  37. K. Morita, B.-N. Kim, H. Yoshida, K. Hiraga, Y. Sakka, J. Eur. Ceram. Soc. 38, 2588 (2018)

    Article  Google Scholar 

  38. Y. Kizaki, Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 89, 142910 (2006)

    Article  ADS  Google Scholar 

  39. G. Bernard-Granger, N. Benameur, A. Addad, M. Nygren, C. Guizard, S. Deville, J. Mater. Res. 24, 2011 (2009)

    Article  ADS  Google Scholar 

  40. G. Bernard-Granger, A. Néri, C. Navone, M. Soulier, J. Simon, M. Marinova-Atanassova, J. Mater. Sci. 47, 4313 (2012)

    Article  ADS  Google Scholar 

  41. J.G. Fisher, S.-J.L. Kang, J. Eur. Ceram. Soc. 29, 2581 (2009)

    Article  Google Scholar 

  42. R. Cong, G. Qiu, C. Yue, M. Guo, F. Cheng, M. Zhang, Ceram. Int. 44, 19764 (2018)

  43. M.I. Morozov, H. Kungl, M.J. Hoffmann, Appl. Phys. Lett. 98, 132908 (2011)

    Article  ADS  Google Scholar 

  44. W.E. Vargas, G.A. Niklasson, Appl. Opt. 36, 5580 (1997)

    Article  ADS  Google Scholar 

  45. L.-P. Tran Huu Hue, Ultrasonics 219 (2000)

  46. R. Krimholtz, D.A. Leedom, G.L. Matthaei, Electron. Lett. 6, 398 (1970)

    Article  ADS  Google Scholar 

  47. Int. J. M Aterials Chem. 5 (2013)

  48. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Mater. Res. Bull. 39, 1709 (2004)

    Article  Google Scholar 

  49. J.-F. Li, K. Wang, B.-P. Zhang, L.-M. Zhang, J. Am. Ceram. Soc. 89, 706 (2006)

    Article  Google Scholar 

  50. B.-P. Zhang, J.-F. Li, K. Wang, H. Zhang, J. Am. Ceram. Soc. 89, 1605 (2006)

    Article  Google Scholar 

  51. F. Delorme, M. Bah, F. Schoenstein, F. Jean, M. Zouaoui Jabli, I. Monot-Laffez, F. Giovannelli, Mater. Lett. 162, 24 (2016)

  52. D. Kuscer, A. Kocjan, M. Majcen, A. Meden, K. Radan, J. Kovač, B. Malič, Ceram. Int. 45, 10429 (2019)

    Article  Google Scholar 

  53. M. Lun, X. Zhou, S. Hu, Y. Hong, B. Wang, A. Yao, W. Li, B. Chu, Q. He, J. Cheng, Y. Wang, Ceram. Int. 47, 28797 (2021)

    Article  Google Scholar 

  54. S. Kumar, M. Shandilya, S. Thakur, N. Thakur, J. Sol. Gel Sci. Technol. 88, 646 (2018)

    Article  Google Scholar 

  55. K. Shalini, D. Prabhu, N.V. Giridharan, Appl. Phys. A 124, 866 (2018)

    Article  ADS  Google Scholar 

  56. S.K. Ojha, S.K. Gogoi, P. Mandal, S.D. Kaushik, J.W. Freeland, M. Jain, S. Middey, Phys. Rev. B 103, 085120 (2021)

    Article  ADS  Google Scholar 

  57. F. Delorme, R. Dujardin, F. Schoenstein, B. Pintault, P. Belleville, C. Autret, I. Monot-Laffez, F. Giovannelli, Ceram. Int. 45, 8313 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the French METSA network (FR3507) for the financial support of the Transmission Electron Microscope experiment, and to T. Chartier (GREMAN, IUT Blois) for DTA–TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Monot-Laffez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monot-Laffez, I., Retoux, R., Zaghrioui, M. et al. Microstructural features and piezoelectric properties of spark plasma sintered lead-free \(\hbox {K}_{\mathbf {0.5}}{} \mathbf{Na} _{\mathbf {0.5}}{} \mathbf{NbO} _{\mathbf {3\,}}\) ceramics. Eur. Phys. J. Spec. Top. 231, 4185–4193 (2022). https://doi.org/10.1140/epjs/s11734-022-00573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00573-y

Navigation