Skip to main content
Log in

Modeling different discrete memristive sine maps and its parameter identification

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Compared with the continuous chaotic system designed by analog circuit, chaotic maps realized by the digital circuit has the characteristics of simple logic and easy implementation, so it has attracted more attention in engineering applications. How to construct the chaotic map with simple structure and strong complexity behaviors has always been a research hotspot. Recently, the concept of discrete memristor receives growing discussion. Existing studies have found that introducing it into classical chaotic map can enhance its chaotic characteristics. In this paper, three discrete memristor mathematical models are summarized. These models are introduced into the classical sine map, and three new two-dimensional discrete memristive sine maps are constructed. Dynamic analysis demonstrate the effect of the discrete memristor in improving the chaos characteristics. The proposed new systems not only expand the scope of chaos, but also greatly improve the Lyapunov exponent value, and appear hyperchaotic behavior and coexisting attractors. Through the parameter identification technology, the proposed discrete memristive chaotic maps are compared with several existing chaotic maps. The identification simulations show that the proposed chaotic maps have lower identification rate, so their security is higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Chen, X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications (World Scientific Press, Singapore, 1998)

    Book  MATH  Google Scholar 

  2. C. Li, J. Sprott, T. Kapitaniak, T. Lu, Chaos Soliton Fract. 109, 76–82 (2018)

    Article  ADS  Google Scholar 

  3. C. Li, G. Chen, J. Kurth, Z. Liu, T. Lei, Commun. Nonlinear Sci. Numer. Simulat. 95, 105600 (2021)

    Article  Google Scholar 

  4. S. Banerjee, J. Kurths, Eur. Phys. J.-Spec. Top. 223, 1441–1445 (2014)

    Article  Google Scholar 

  5. X. Li, J. Mou, L. Xiong, Z. Wang, J. Xu, Opt. Laser Technol. 140, 107074 (2021)

    Article  Google Scholar 

  6. S. Arora, P. Anand, Neural Comput. Appl. 31, 4385–4405 (2019)

    Article  Google Scholar 

  7. R. Salgotra, U. Singh, S. Singh, N. Mittal, Knowl.-Based Syst. 217, 106790 (2021)

    Article  Google Scholar 

  8. C. Ma, J. Mou, L. Xiong, S. Banerjee, T. Liu, X. Han, Nonlinear Dyn. 103, 2867–2880 (2021)

    Article  Google Scholar 

  9. C. Li, B. Feng, S. Li, J. Kurths, G. Chen, IEEE Trans. Circ. Syst. I Regul. Pap. 66, 2322–2335 (2019)

    Article  Google Scholar 

  10. I. Hussain, A. Anees, M. Aslam, R. Ahmed, N. Siddiqui, Eur. Phys. J. Plus 133, 167 (2018)

    Article  Google Scholar 

  11. M. Muñoz-Guillermo, Inf. Sci. 552, 352–364 (2021)

    Article  MathSciNet  Google Scholar 

  12. Z. Hua, Y. Zhou, C. Pun, P. Chen, Inf. Sci. 339, 80–94 (2016)

    Article  Google Scholar 

  13. C. Cao, K. Sun, W. Liu, Signal Process. 143, 122–133 (2018)

    Article  Google Scholar 

  14. M. Han, K. Zhong, T. Qiu, B. Han, IEEE Trans. Cybern. 49, 2720–2731 (2019)

    Article  Google Scholar 

  15. D. Yousri, A. AbdelAty, L. Said, A. Elwakil, B. Maundy, A. Radwan, Nonlinear Dyn. 95, 2491–2542 (2019)

    Article  Google Scholar 

  16. Y. Peng, K. Sun, S. He, X. Yang, Eur. Phys. J. Plus 133, 305 (2018)

    Article  Google Scholar 

  17. Y. Deng, H. Hu, W. Xiong, N. Xiong, L. Liu, IEEE Trans. Syst. Man Cybern. Syst. 45, 1187–1200 (2015)

    Article  Google Scholar 

  18. N. Bassam, O. Al-Jerew, IEEE Access 9, 111915–111924 (2021)

    Article  Google Scholar 

  19. A. Alamodi, K. Sun, Y. Peng, Eur. Phys. J.-Spec. Top. 229, 1095–1108 (2020)

    Article  Google Scholar 

  20. C. Pak, L. Huang, Signal Process. 138, 129–137 (2017)

    Article  Google Scholar 

  21. C. Ma, J. Mou, P. Peng, T. Liu, Eur. Phys. J.-Spec. Top. 203, 1945–1957 (2021)

    Article  Google Scholar 

  22. C. Wang, X. Liu, H. Xia, Chaos 27, 033114 (2017)

    Article  ADS  Google Scholar 

  23. X. Ma, J. Mou, J. Liu, C. Ma, F. Yang, X. Zhao, Nonlinear Dyn. 100, 2859–2876 (2020)

    Article  Google Scholar 

  24. S. He, K. Sun, Y. Peng, L. Wang, AIP Adv. 10, 15332 (2020)

    Article  ADS  Google Scholar 

  25. B. Bao, H. Li, H. Wu, X. Zhang, M. Chen, Electron. Lett. 56, 769–770 (2020)

    Article  ADS  Google Scholar 

  26. B. Bao, K. Rong, H. Li, K. Li, Z. Hua, X. Zhang, IEEE Trans. Circ. Syst. II Exp. Briefs 68, 2992–2996 (2021)

    ADS  Google Scholar 

  27. Y. Peng, K. Sun, S. He, Chaos Soliton Fract. 137, 109873 (2020)

    Article  Google Scholar 

  28. H. Li, Z. Hua, H. Bao, L. Zhu, M. Chen, B. Bao, IEEE Trans. Ind. Electron. 68, 9931–9940 (2021)

    Article  Google Scholar 

  29. Y. Peng, S. He, K. Sun, AEU-Int. J. Electron. C. 129, 153539 (2021)

    Article  Google Scholar 

  30. Y. Peng, S. He, K. Sun, Results Phys. 24, 104106 (2021)

    Article  Google Scholar 

  31. S. Kong, C. Li, S. He, S. Cicek, Q. Lai, Chin. Phys. B 30, 110502 (2021)

    Article  ADS  Google Scholar 

  32. D. Yue, Y. Li, Nonlinear Dyn. 104, 4601–4614 (2021)

    Article  Google Scholar 

  33. M. Chen, M. Sun, H. Bao, Y. Hua, B. Bao, IEEE Trans. Ind. Electron. 67, 2197–2206 (2020)

    Article  Google Scholar 

  34. H. Bao, M. Chen, H. Wu, B. Bao, Sci. China Technol. Sci. 63, 603–613 (2020)

    Article  ADS  Google Scholar 

  35. S. Adhikari, M. Sah, H. Kim, L. Chua, IEEE Trans. Circ. Syst. I Regul. Pap. 60, 3008–3021 (2013)

    Article  Google Scholar 

  36. W. Chen, Z. Wang, H. Xie, W. Yu, IEEE Trans. Neurol. Syst. Rehabil. 15, 266–272 (2007)

    Article  Google Scholar 

  37. S. Jafari, J. Sprott, V.-T. Pham, S. Gharibzadeh, A. Jafari, Int. J. Bifurc. Chaos 24, 1450134 (2014)

    Article  Google Scholar 

  38. Y. Peng, K. Sun, S. He, Int. J. Bifurc. Chaos 30, 2050058 (2020)

    Article  Google Scholar 

  39. S. Das, P. Suganthan, IEEE Trans. Evol. Comput. 15, 4–31 (2011)

    Article  Google Scholar 

  40. W. Liu, K. Sun, S. He, Nonlinear Dyn. 89, 2521–2532 (2017)

    Article  Google Scholar 

  41. Y. Peng, K. Sun, S. He, L. Wang, Nonlinear Dyn. 97, 897–901 (2019)

    Article  Google Scholar 

  42. A. Khennaoui, A. Ouannas, S. Bendoukha, X. Wang, V. Pham, Entropy 20, 530 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Hunan Province (No.2021JJ40545) and the Hunan Provincial Education Department (No. 20C1787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexi Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Lan, Z., Li, W. et al. Modeling different discrete memristive sine maps and its parameter identification. Eur. Phys. J. Spec. Top. 231, 3187–3196 (2022). https://doi.org/10.1140/epjs/s11734-022-00559-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00559-w

Navigation