Skip to main content
Log in

Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Since the concept of discrete memristor was proposed, more and more scholars began to study this topic. At present, most of works on the discrete memristor are devoted to the mathematical modeling and digital circuit implementation, but the research on its synchronization control has not received much attention. This paper focuses on the parameter identification for the discrete memristive chaotic map, and a modified intelligent optimization algorithm named adaptive differential evolution algorithm is proposed. To deal with the complex behaviors of hyperchaos and coexisting attractors of the considered discrete memristive chaotic maps, the identification objective function adopts two special parts: time sequences and return maps. Numerical simulations demonstrate that the proposed algorithm has the best performance among six existing algorithms, and it can still accurately identify the parameters of the original system under noise interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The datasets (MATLAB codes) generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D., Snider, G., Stewart, D., Williams, S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  3. Zhao, B., Xiao, M., Zhou, N.: Synaptic learning behavior of a tio2 nanowire memristor. Nanotechnology 30, 425202 (2019)

    Article  Google Scholar 

  4. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  5. Wang, C., Xiong, L., Sun, J., Yao, W.: Memristor-based neural networks with weight simultaneous perturbation training. Nonlinear Dyn. 95, 2893–2906 (2019)

    Article  Google Scholar 

  6. Pannu, J.S., Raj, S., Fernandes, S.L., Chakraborty, D., Rafiq, S., Cady, N., Jha, S.K.: Design and fabrication of flow-based edge detection memristor crossbar circuits. IEEE Trans. Circuits Syst. II: Express Briefs 67, 19589441 (2020)

    Article  Google Scholar 

  7. Lai, Q., Wan, Z., Kuate, P.D.K., Fotsin, H.: Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Commun. Nonlinear Sci. Numer. Simul. 89, 105341 (2020)

    Article  MathSciNet  Google Scholar 

  8. Itoh, M., Chua, L.: Dynamics of memristor circuits. Int. J. Bifurcat. Chaos 24, 1430015 (2014)

    Article  MathSciNet  Google Scholar 

  9. Sahin, M.E., Demirkol, A.S., Guler, H., Hamamci, S.E.: Design of a hyperchaotic memristive circuit based on wien bridge oscillator. Comput. Electr. Eng. 88, 106826 (2020)

    Article  Google Scholar 

  10. Bao, H., Wang, N., Bao, B., Chen, M., Jin, P., Wang, G.: Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun. Nonlinear Sci. Numer. Simul. 57, 264–275 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chang, H., Li, Y., Chen, G., Yuan, F.: Extreme multistability and complex dynamics of a memristor-based chaotic system. Int. J. Bifurcat. Chaos 30, 2030019 (2020)

    Article  MathSciNet  Google Scholar 

  12. Rajagopal, K., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91, 1491–1512 (2018)

    Article  Google Scholar 

  13. Zhang, S., Zheng, J., Wang, X., Zeng, Z.: Multi-scroll hidden attractor in memristive hr neuron model under electromagnetic radiation and its applications. Chaos 31, 011101 (2021)

    Article  MathSciNet  Google Scholar 

  14. Zhang S., Li C., Zheng J., Wang X., Zeng Z., Peng, X.: Generating any number of initial offset-boosted coexisting chua’s double-scroll attractors via piecewise-nonlinear memristor. IEEE Trans. Ind. Electron. page Early Access, (2021)

  15. Gu, J., Li, C., Chen, Y., Iu, H.H.C., Lei, T.: A conditional symmetric memristive system with infinitely many chaotic attractors. IEEE Access 8, 12394–12401 (2020)

    Article  Google Scholar 

  16. Yang, Y., Wang, L., Duan, S., Luo, L.: Dynamical analysis and image encryption application of a novel memristive hyperchaotic system. Opt. Laser Technol. 133, 106553 (2021)

    Article  Google Scholar 

  17. Pham, V.-T., Volos, C., Fortuna, L.: Memristor-based systems: nonlinearity, dynamics and applications. Eur. Phys. J. Spec. Top. 228, 1902–1906 (2019)

    Article  Google Scholar 

  18. He, S., Sun, K., Peng, Y., Wang, L.: Modeling of discrete fracmemristor and its application. AIP Adv. 10, 015332 (2020)

    Article  Google Scholar 

  19. Peng, Y., He, S., Sun, K.: A higher dimensional chaotic map with discrete memristor. AEU-Int. J. Electron. Commun. 129, 153539 (2021)

    Article  Google Scholar 

  20. Peng, Y., He, S., Sun, K.: Chaos in the discrete memristor-based system with fractional-order difference. Results Phys. 24, 104106 (2021)

    Article  Google Scholar 

  21. Bao, B., Li, H., Huagan, W., Zhang, X., Chen, M.: Hyperchaos in a second-order discrete memristor-based map model. Electron. Lett. 56, 769–770 (2020)

    Article  Google Scholar 

  22. Li, H., Hua, Z., Bao, H., Zhu, L., Chen, M., Bao, B.: Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Ind. Electron. 68, 9931–9940 (2021)

    Article  Google Scholar 

  23. Bao, B., Rong, K., Li, H., Li, K., Hua, Z., Zhang, X.: Memristor-coupled logistic hyperchaotic map. IEEE Trans. Circuits Syst. II: Express Briefs, page Early Access (2021)

  24. Bao, H., Hua, Z., Li, H., Chen, M., Bao, B.: Discrete memristor hyperchaotic maps. IEEE Trans. Circuits Syst. I: Regular Papers, page Early Access (2021)

  25. Li, K., Bao, H., Li, H., Ma, J., Hua, Z., Bao, B.: Memristive rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inf., page Early Access, (2021)

  26. Kong, S., Li, C., He, S., Cicek, S., Lai, Q.: A memristive map with coexisting chaos and hyperchaos. Chin. Phys. B, page Early Access. (2021)

  27. Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos 25, 097611 (2015)

    Article  MathSciNet  Google Scholar 

  28. Yousri, D.A., AbdelAty, A.M., Said, L.A., Elwakil, A.S., Maundy, B., Radwan, A.G.: Parameter identification of fractional-order chaotic systems using different meta-heuristic optimization algorithms. Nonlinear Dyn. 95, 2491–2542 (2019)

    Article  Google Scholar 

  29. Wei, D., Miao, Q., Tong, L., Tang, Y.: Identification of fractional-order systems with unknown initial values and structure. Phys. Lett. A 381, 1943–1949 (2017)

    Article  MathSciNet  Google Scholar 

  30. Peng, Y., Sun, K., He, S., Yang, X.: Parameter estimation of a complex chaotic system with unknown initial values. Eur. Phys. J. Plus 133, 305 (2018)

    Article  Google Scholar 

  31. Chen, F., Ding, Z., Zhongrong, L., Zeng, X.: Parameters identification for chaotic systems based on a modified jaya algorithm. Nonlinear Dyn. 94, 2307–2326 (2018)

    Article  Google Scholar 

  32. Gupta, S., Upadhyaya, V., Singh, A., Varshney, P., Srivastava, S.: Modeling of fractional order chaotic systems using artificial bee colony optimization and ant colony optimization. J. Intell. Fuzzy Syst. 35, 5337–5344 (2018)

    Article  Google Scholar 

  33. Zhang, P., Yang, R., Yang, R., Ren, G., Yang, X., et al.: Parameter estimation for fractional-order chaotic systems by improved bird swarm optimization algorithm. Int. J. Modern Phys. C 30, 1950086 (2019)

    Article  MathSciNet  Google Scholar 

  34. Ouannas, A., Khennaoui, A.-A., Grassi, G., Bendoukhad, S.: On chaos in the fractional-order grassi-miller map and its control. J. Comput. Appl. Math. 358, 293–305 (2019)

    Article  MathSciNet  Google Scholar 

  35. Peng, Y., Sun, K., He, S., Peng, D.: Parameter identification of fractional-order discrete chaotic systems. Entropy 21, 27 (2019)

    Article  Google Scholar 

  36. Peng, Y., Sun, K., He, S.: Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm. Chin. Phys. B 29, 030502 (2020)

    Article  Google Scholar 

  37. Jafari, S., Ahmadi, A., Panahi, S., Rajagopal, K.: Extreme multi-stability: When imperfection changes quality. Chaos Solitons & Fractals 108, 182–186 (2018)

    Article  Google Scholar 

  38. Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99, 1709–1761 (2020)

    Article  Google Scholar 

  39. Jafari, S., Sprott, J.C., Pham, V.-T., Golpayegani, S.M.R.H., Jafari, A.H.: A new cost function for parameter estimation of chaotic systems using return maps as fingerprints. Int. J. Bifurc. Chaos 24, 1450134 (2014)

    Article  MathSciNet  Google Scholar 

  40. Peng, Y., Sun, K., He, S.: An improved return maps method for parameter estimation of chaotic systems. Int. J. Bifurc. Chaos 30, 2050058 (2020)

    Article  MathSciNet  Google Scholar 

  41. Storn, R.M., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. ICSI Technical Report TR-95-012., (1995)

  42. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  43. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evolut. Comput. 15, 4–31 (2011)

    Article  Google Scholar 

  44. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft Comput. 22, 387–408 (2018)

    Article  Google Scholar 

  45. Rao, R.V.: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 19–34 (2016)

    Google Scholar 

  46. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Meng, X., Gao, X.Z., Lu, L., Liu, Y., Zhang, H.: A new bio-inspired optimisation algorithm. J. Experimen. Theore. Artif. Intell. 28, 673–687 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments and insightful suggestions.

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62071496, 62061008 and 61901530), the Natural Science Foundation of Hunan Province (No.2021JJ40545) and the Hunan Provincial Education Department (No. 20C1787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo He.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., He, S. & Sun, K. Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm. Nonlinear Dyn 107, 1263–1275 (2022). https://doi.org/10.1007/s11071-021-06993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06993-0

Keywords

Navigation