Skip to main content
Log in

Analytical study of self-oscillatory pattern-forming crystal growth in two-parabola model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The directional solidification of a binary alloy was analytically studied within a phase field two-parabola model. The method of the Green’s function was used to find solutions to the equations of motion for the fields of the order parameter and impurity concentration because equations are piecewise linear in this model. Looking for periodic solutions with a small contribution of accelerated sections to the full displacement of the planar crystal-melt interface we have self-consistently derived the ordinary differential equation of motion for the interface position. This equation takes the form of the one of a nonlinear oscillator with the friction force and the mass both nonlinearly dependent on the velocity. Under typical experimental conditions this “friction” is negative therefore, there is a stable limit cycle. The self-oscillating dynamics of the interface and the spatial solute concentration profile were calculated without using the perturbation theory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The stability region of a plane IB on the plane of control parameters \(v-\nabla T\) was determined analytically in [12].

  2. The article [6] is devoted to the calculation of the transient regime.

  3. It should be noted that the instantaneous acceleration value can be even arbitrarily high, but only during a vanishingly small part \(\tau \) of the total oscillation period \(T_0\), so that the “accelerated” contributions to the displacement are small, \( {\ddot{Z}} \tau ^2\ll \dot{Z}T_0\) and similar inequalities should be valid for hyper-accelerations \(\frac{\partial ^3Z}{\partial t^3}, \ldots \)

References

  1. A.L. Korzhenevskii, R. Bausch, R. Schmitz, Phys. Rev. E 83, 041609 (2011)

    Article  ADS  Google Scholar 

  2. A.L. Korzhenevskii, R. Bausch, R. Schmitz, Phys. Rev. Lett 108, 046101 (2012)

    Article  ADS  Google Scholar 

  3. A.L. Korzhenevskii, R. Bausch, R. Schmitz, Phys. Rev. E 85, 021605 (2012)

    Article  ADS  Google Scholar 

  4. A.L. Korzhenevskii, R.E. Rozas, J. Horbach, J. Phys. 28, 035001 (2016)

  5. A.A. Chevrychkina, N.M. Bessonov, A.L. Korzhenevskii, Phys. Solid State 61, 2096 (2019)

    Article  ADS  Google Scholar 

  6. A.A. Chevrychkina, N.M. Bessonov, A.L. Korzhenevskii, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 253 (2020)

    Article  Google Scholar 

  7. A.A. Chevrychkina, N.M. Bessonov, A.L. Korzhenevskii, Phys. Solid State 62, 1398 (2020)

    Article  Google Scholar 

  8. A.A. Chevrychkina, A.L. Korzhenevskii, Phys. Solid State 62, 2365 (2020)

    Article  ADS  Google Scholar 

  9. J.Q. Broughton, G.H. Gilmer, K.A. Jackson, Phys. Rev. Lett. 49, 1496 (1982)

    Article  ADS  Google Scholar 

  10. H. Loewen, S.A. Schofield, D.W. Oxtoby, J. Chem. Phys. 94, 5685 (1991)

    Article  ADS  Google Scholar 

  11. H. Loewen, J. Bechhoefer, Europhys. Lett. 16, 195 (1991)

    Article  ADS  Google Scholar 

  12. A.A. Chevrychkina, N.M. Bessonov, A.L. Korzhenevskii, Phys. Solid State 61, 1860 (2019)

    Article  ADS  Google Scholar 

  13. M. Carrard, M. Gremaud, M. Zimmermann, W. Kurz, Acta Metall. Mater. 40, 983 (1992)

    Article  Google Scholar 

  14. J.S. Langer, Rev. Mod. Phys. 52, 1 (1980)

    Article  ADS  Google Scholar 

  15. Y. Wang, M. Wang, Phys. Rev. E 69, 021607 (2004)

    Article  ADS  Google Scholar 

  16. C. Barroo, V. Voorsluijs, T. Visart de Bocarme’, P. Gaspard, Y. De Decker, Phys. Chem. Chem. Phys. 20, 21302 (2018)

    Article  Google Scholar 

  17. Y.-F. Tu, R.-B. Wei, J.-P. Sang, S.-Y. Huang, X.-W. Zou, Phys. Rev. E 77, 041601 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (project n. 19-19-00552)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chevrychkina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevrychkina, A., Korzhenevskii, A. Analytical study of self-oscillatory pattern-forming crystal growth in two-parabola model. Eur. Phys. J. Spec. Top. 231, 1147–1152 (2022). https://doi.org/10.1140/epjs/s11734-022-00526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00526-5

Navigation