Skip to main content
Log in

Shape functions for dendrite tips of SCN and Si

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this work, a recently developed analytical theory describing dendrite tips growing in undercooled melts in the absence of convection is tested against experimental data of succinonitrile (SCN) and Si. It is shown as a result that the recently found shape function describes the region of the dendrite tip to some distance from its vertex well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.-C. Huang, M.E. Glicksman, Acta Metall. 29, 717–734 (1981)

    Article  Google Scholar 

  2. J. Langer, Rev. Mod. Phys. 52, 1–28 (1980)

    Article  ADS  Google Scholar 

  3. D. Alexandrov, P. Galenko, Phys.-Usp. 57, 771–786 (2014)

    Article  ADS  Google Scholar 

  4. W. Kurz, D. Fisher, Fundamentals of Solidification, 3rd edn. (Trans Tech Publication, Aedermannsdorf, 1989)

    Google Scholar 

  5. P.K. Galenko, D.V. Alexandrov, Philos. Trans. R. Soc. A 376(2113), 20170210 (2018)

    Article  ADS  Google Scholar 

  6. P. Pelcé, Dynamics of Curved Fronts (Academic Press, Boston, 1988)

    MATH  Google Scholar 

  7. L.V. Toropova, E.A. Titova, D.V. Alexandrov, P.K. Galenko, M. Rettenmayr, A. Kao, G. Demange, J. Phys. Condens. Matter 33, 365402 (2021)

    Article  Google Scholar 

  8. O.V. Gusakova, P.K. Galenko, V.G. Shepelevich, D.V. Alexandrov, M. Rettenmayr, Philos. Trans. R. Soc. A 377, 20180204 (2019)

    Article  ADS  Google Scholar 

  9. K. Libbrecht, Snowflakes (Voyageur Press, Minneapolis, 2004)

    Google Scholar 

  10. Y. Teraoka, A. Saito, S. Okawa, Int. J. Refriger. 25, 218 (2002)

    Article  Google Scholar 

  11. D.V. Alexandrov, AYu. Zubarev, Philos. Trans. R. Soc. A 379, 20200301 (2021)

    Article  ADS  Google Scholar 

  12. D.V. Alexandrov, P.K. Galenko, Philos. Trans. R. Soc. A 379, 20200325 (2021)

    Article  ADS  Google Scholar 

  13. G.P. Ivantsov, Dokl. Akad. Nauk SSSR 58, 567–569 (1947)

    Google Scholar 

  14. G.P. Ivantsov, Dokl. Akad. Nauk SSSR 83, 573–575 (1952)

    Google Scholar 

  15. J.S. Langer, Phys. Rev. A 36, 3350 (1987)

    Article  ADS  Google Scholar 

  16. J.S. Langer, Science 243, 1150 (1989)

    Article  ADS  Google Scholar 

  17. A.J. Melendez Ramirez, PhD thesis (University of Iowa, Iowa City, Iowa, USA, 2009)

  18. E.A. Brener, Phys. Rev. Let. 71, 3653 (1993)

    Article  ADS  Google Scholar 

  19. U. Bisang, J.H. Bilgram, Phys. Rev. Lett. 75, 3898 (1995)

    Article  ADS  Google Scholar 

  20. D.V. Alexandrov, P.K. Galenko, Philos. Trans. R. Soc. A 378, 20190243 (2020)

    Article  ADS  Google Scholar 

  21. W. Huang, L. Wang, Solidification researches using transparent model materials—a review. Sci. China Technol. Sci. 55, 377–386 (2012). https://doi.org/10.1007/s11431-011-4689-1

    Article  ADS  Google Scholar 

  22. K. Nagashio, K. Kuribayashi, Acta Mater. 53(10), 3021–3029 (2005)

    Article  ADS  Google Scholar 

  23. L.V. Toropova, D.V. Alexandrov, M. Rettenmayr, D. Liu, J. Phys. Condens. Matter 34(9), 094002 (2022)

  24. D.V. Alexandrov, L.V. Toropova, E.A. Titova, A. Kao, G. Demange, P.K. Galenko, M. Rettenmayr, Philos. Trans. R. Soc. A 379, 20200326 (2021)

    Article  ADS  Google Scholar 

  25. D.V. Alexandrov, P.K. Galenko, L.V. Toropova, Philos. Trans. R. Soc. A 376(2113), 20170215 (2018)

    Article  ADS  Google Scholar 

  26. A. Kao, L.V. Toropova, D.V. Alexandrov, G. Demange, P.K. Galenko, J. Phys. Condens. Matter 32, 194002 (2020)

    Article  ADS  Google Scholar 

  27. L.V. Toropova, P.K. Galenko, D.V. Alexandrov, G. Demange, A. Kao, M. Rettenmayr, Eur. Phys. J. Special Topics 229(2–3), 275–286 (2020)

    Article  ADS  Google Scholar 

  28. L.V. Toropova, P.K. Galenko, D.V. Alexandrov, M. Rettenmayr, A. Kao, G. Demange, Eur. Phys. J. Special Topics 229(19–20), 2899–2909 (2020)

    Article  ADS  Google Scholar 

  29. L.V. Toropova, D.V. Alexandrov, M. Rettenmayr, P.K. Galenko, J. Cryst. Growth 535, 125540 (2020)

    Article  Google Scholar 

  30. A. Kao, L.V. Toropova, A. Krastins, G. Demange, D.V. Alexandrov, P.K. Galenko, JOM 72(9), 3123–3131 (2020)

    Article  ADS  Google Scholar 

  31. D.V. Alexandrov, P.K. Galenko, Acta Mater. 137, 64–70 (2017)

    Article  ADS  Google Scholar 

  32. D.V. Alexandrov, P.K. Galenko, IUTAM Bookseries 34, 203–215 (2019)

    Article  Google Scholar 

  33. H. Huppert, J. Fluid Mech. 212, 209–240 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  34. R.N. Hills, D.E. Loper, P.H. Roberts, Q. J. Appl. Math. 36, 505–539 (1983)

    Article  Google Scholar 

  35. E.V. Makoveeva, D.V. Alexandrov, Philos. Trans. R. Soc. A 377(2143), 20180210 (2019)

    Article  ADS  Google Scholar 

  36. D.V. Alexandrov, A.A. Ivanov, I.V. Alexandrova, Philos. Trans. R. Soc. A 376(2113), 20170217 (2018)

    Article  ADS  Google Scholar 

  37. M.G. Worster, J. Fluid Mech. 167, 481–501 (1986)

    Article  ADS  Google Scholar 

  38. V.V. Mansurov, Math. Comput. Modell. 14, 819–821 (1990)

    Article  Google Scholar 

  39. D.V. Alexandrov, I.A. Bashkirtseva, L.B. Ryashko, Philos. Trans. R. Soc. A 376(2113), 20170216 (2018)

    Article  ADS  Google Scholar 

  40. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 377(2143), 20180215 (2019)

    Article  ADS  Google Scholar 

  41. I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 378, 20190245 (2020)

    Article  ADS  Google Scholar 

  42. D.V. Alexandrov, P.K. Galenko, J. Phys. Chem. Solids 108, 98–103 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present research work consists of theoretical and computational parts, which were supported by different financial sources. L.V.T gratefully acknowledges research funding from the Foundation for the Advancement of Theoretical Physics and Mathematics ”BASIS” (project No. 21-1-3-11-1) for the theoretical part, and the DAAD (no. 57515327) and the Ministry of Science and Higher Education of the Russian Federation (project passport No. 2338-21) within the “Michael Lomonosov” program scheme for comparing theoretical equations with experimental data and interpretation of the results. The author is grateful to Prof. M. Rettenmayr and Dr. D. Liu for the experimental results on the Al–Si alloy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Toropova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropova, L.V. Shape functions for dendrite tips of SCN and Si. Eur. Phys. J. Spec. Top. 231, 1129–1133 (2022). https://doi.org/10.1140/epjs/s11734-022-00519-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00519-4

Navigation