Skip to main content
Log in

The bulk crystal growth in binary supercooled melts with allowance for heat removal

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A mathematical model describing crystal growth in a supercooled binary melt in the presence of heat removal and withdrawal of product crystals from the working liquid of the crystallizer is formulated. An approximate analytical solution of the integro-differential system of the kinetic and balance equations is constructed using the separation of variables method and the saddle point technique to calculate the Laplace-type integral. The particle size distribution function and the dynamics of desupercooling in the metastable system taking into account the Meirs nucleation kinetics are found. It is shown that the distribution function increases with decreasing the impurity concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. Galkin, P.G. Vekilov, J. Am. Chem. Soc. 122, 156 (2000)

    Article  Google Scholar 

  2. M.A. Hamza, B. Berge, W. Mikosch, E. Rühl, Phys. Chem. Chem. Phys. 6, 3484 (2004)

    Article  Google Scholar 

  3. D.A. Barlow, J. Cryst. Growth 311, 2480 (2009)

    Article  ADS  Google Scholar 

  4. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Phil. Trans. R. Soc. A 377, 20180215 (2019)

    Article  ADS  Google Scholar 

  5. D.V. Alexandrov, J. Phys. Chem. Solids 91, 48 (2016)

    Article  ADS  Google Scholar 

  6. P.K. Galenko, D.V. Alexandrov, Phil. Trans. R. Soc. A 376, 20170210 (2018)

    Article  ADS  Google Scholar 

  7. D.V. Alexandrov, AYu. Zubarev, Phil. Trans. R. Soc. A 377, 20180353 (2019)

    Article  ADS  Google Scholar 

  8. D.V. Alexandrov, AYu. Zubarev, Phil. Trans. R. Soc. A 378, 20200002 (2020)

    Article  ADS  Google Scholar 

  9. K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, Amsterdam, 2008)

    Google Scholar 

  10. M. Hanhoun, L. Montastruc, C. Azzaro-Pntel, B. Biscans, M. Freche, L. Pibouleau, Chem. Eng. J. 215–216, 903 (2013)

    Article  Google Scholar 

  11. Y.A. Buyevich, V.V. Mansurov, J. Cryst. Growth 104, 861 (1990)

    Article  ADS  Google Scholar 

  12. Y.A. Buyevich, Y.M. Goldobin, G.P. Yasnikov, Int. J. Heat Mass Trans. 37, 3003 (1994)

    Article  Google Scholar 

  13. Y.A. Buyevich, D.V. Alexandrov, IOP Conf. Ser. Mater. Sci. Eng. 192, 012001 (2017)

    Article  Google Scholar 

  14. D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 383 (2020)

    Article  Google Scholar 

  15. I.V. Alexandrova, D.V. Alexandrov, Phil. Trans. R. Soc. A 378, 20190245 (2020)

    Article  ADS  Google Scholar 

  16. D.V. Alexandrov, A.P. Malygin, J. Phys. A Math. Theor. 46, 455101 (2013)

    Article  ADS  Google Scholar 

  17. D.V. Alexandrov, J. Phys. A Math. Theor. 47, 125102 (2014)

    Article  ADS  Google Scholar 

  18. D.V. Alexandrov, Philos. Mag. Lett. 94, 786 (2014)

    Article  ADS  Google Scholar 

  19. D.V. Alexandrov, Phys. Lett. A 378, 1501 (2014)

    Article  ADS  Google Scholar 

  20. D.V. Alexandrov, E.V. Makoveeva, Phys. Lett. A 384, 126259 (2020)

    Article  MathSciNet  Google Scholar 

  21. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 2923 (2020)

    Article  Google Scholar 

  22. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981)

    Google Scholar 

  23. U. Vollmer, J. Raisch, Control Eng. Pract. 9, 837 (2001)

    Article  Google Scholar 

  24. A. Rachah, D. Noll, F. Espitalier, F. Baillon, Math. Methods Appl. Sci. 39, 1101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. E.V. Makoveeva, D.V. Alexandrov, Phil. Trans. R. Soc. A 377, 20180210 (2019)

    Article  ADS  Google Scholar 

  26. E.V. Makoveeva, D.V. Alexandrov, Phil. Trans. R. Soc. A 376, 20170327 (2018)

    Article  ADS  Google Scholar 

  27. E.V. Makoveeva, D.V. Alexandrov, Russian Metall. (Metally) 2018, 707 (2018)

    Article  ADS  Google Scholar 

  28. A.C. Fowler, IMA J. Appl. Math. 35, 159 (1985)

    Article  ADS  Google Scholar 

  29. R.N. Hills, D.E. Loper, P.H. Roberts, Q. J. Appl. Math. 36, 505 (1983)

    Article  Google Scholar 

  30. D.V. Alexandrov, P.K. Galenko, Phil. Trans. R. Soc. A 378, 20190243 (2020)

    Article  ADS  Google Scholar 

  31. H.E. Huppert, J. Fluid Mech. 212, 209 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  32. D.V. Alexandrov, I.G. Nizovtseva, Phil. Trans. R. Soc. A 378, 20190248 (2020)

    Article  Google Scholar 

  33. V.V. Slezov, Kinetics of First-Order Phase Transitions (Wiley, VCH, Weinheim, 2009)

    Book  Google Scholar 

  34. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)

    Article  ADS  Google Scholar 

  35. D.V. Alexandrov, J. Cryst. Growth 457, 11 (2017)

    Article  ADS  Google Scholar 

  36. I.V. Alexandrova, D.V. Alexandrov, Phil. Trans. R. Soc. A 378, 20190247 (2020)

    Article  ADS  Google Scholar 

  37. I.V. Alexandrova, A.A. Ivanov, D.V. Alexandrov, J. Cryst. Growth 532, 125456 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This study is divided into two different parts, theoretical and numerical. The first one was supported by the Foundation of the Advancement of Theoretical Physics and Mathematics “BASIS” [project no. 20-1-5-82-1]. The second one was made possible due to the financial support of the Ministry of Science and Higher Education of the Russian Federation [project number FEUZ-2020-0057].

Author information

Authors and Affiliations

Authors

Appendix: Expressions determining the analytical solution

Appendix: Expressions determining the analytical solution

$$\begin{aligned}&N\left( U,U^{'},U^{''},t \right) \\&\quad =\frac{R_{1}b_{2}\left( U^{'} \right) ^{2}I^{2}-R_{2}U^{'}I+R_{3}\left( U^{''}I+U^{'}B \right) }{\left( 1+b_{1}U^{'}A \right) U^{'}I+R_{3}U^{'}A}\, , \\&\quad U_{sd}=-MQ_{2}\left( 0 \right) -Q_{1}\left( 0 \right) -\left( Mb_{2}+b_{1} \right) I, \\&\quad R_{1}=Q_{1}+U^{''}+b_{1}U^{'}I,\, \,\\&\quad R_{2}=Q_{1}^{'}+b_{1}U^{''}I+b_{1}U^{'}B+MQ_{2}^{'}\, ,\\&\quad R_{3}=Q_{1}+b_{1}U^{'}I+U^{''}+MQ_{2},\, \\&\quad M=\frac{m\sigma _{0}}{\mathrm {\Delta }\mathrm {\Theta }_{0}},\, \, \, \, J=\left( U^{'} \right) ^{p-1}\, , \\&\quad I=\, \sum \limits _{k=0}^\infty \left( Z_{k}-u_{0}Y_{k} \right) \\&\quad \left[ F_{0k}\exp \left( \frac{-s_{k}}{4u_{0}} \right) +\frac{{4u_{0}\nu }_{k}}{s_{k}'} \right] +J\mathrm {\Psi }+\frac{u_{0}\delta J}{x_{0}+u_{0}}\, , \\&\quad \mathrm {\Psi }=\frac{\left( x_{0}+s_{*} \right) ^{4}-4s_{*}^{3}\left( x_{0}+s_{*} \right) +3s_{*}^{4}}{12\left( x_{0}+u_{0} \right) },\, \\&\quad \delta =\left[ \frac{\left( x_{0}+s_{*} \right) ^{3}}{3}-\frac{s_{*}^{3}}{3} \right] , \\&\quad A=-\sum \limits _{k=0}^\infty \left( Z_{k}-u_{0}Y_{k} \right) \frac{\nu _{k3}\left( U^{'} \right) ^{p-2}4u_{0}}{s_{k}'}\, , \\&\quad B=\sum \limits _{k=0}^\infty \left( Z_{k}-u_{0}Y_{k} \right) \\&\quad \left[ F_{0k}\exp {\left( \frac{-s_{k}}{4u_{0}} \right) \left( \frac{-s_{k}'}{4u_{0}} \right) +\frac{4u_{0}Es_{k}^{'}-4u_{0}\nu _{k}s_{k}^{''}}{\left( s_{k}^{'} \right) ^{2}}} \right] \\&\quad +\left( p-1 \right) \left( U^{'} \right) ^{p-2}U^{''}\mathrm {\Psi }+\frac{u_{0}\delta \left( p-1 \right) \left( U^{'} \right) ^{p-2}U^{''}}{x_{0}+u_{0}}\, , \\&\quad E=\nu _{k1} p\left( U^{'} \right) ^{p-1}U^{''}-\nu _{k2}\left( p-1 \right) \left( U^{'} \right) ^{p-2}U^{''}-\nu _{k3}\\&\quad \left( p-2 \right) \left( U^{'} \right) ^{p-3}\left( U^{''} \right) ^{2}\, ,\, \\&\quad Z_{k}={\int ^{{x}_{0}}_0} X_{k} \left( x \right) \left( x+s_{*} \right) ^{2}dx\, ,\, \, \, \, \\&\quad \mathrm {Y}_{\mathrm {k}}={\int ^{{x}_{0}}_0} \left( x+s_{*} \right) ^{2} \left( \frac{dX_{k}}{dx} \right) dx, \\&\quad \mathrm {\Phi }_{k}\left( U^{'} \right) = \left( 1+4u_{0}^{2}n_{k}^{2} \right) U^{'}\left( t \right) +4u_{0}\gamma , \\&\quad \nu _{k1}=\frac{1}{I_{k}}{\int ^{x_{0}}_0} \frac{X_{k}\left( x \right) \exp \left( -\frac{x}{u_{0}} \right) dx}{x_{0}+u_{0}} ,\, \,\\&\quad \nu _{k2}=\frac{\gamma }{I_{k}}{\int ^{{x}_{0}}_0} \frac{(x_{0}-x)X_{k}\left( x \right) \exp \left( -\frac{x}{u_{0}} \right) dx}{x_{0}+u_{0}} ,\,\\&\quad \nu _{k3}=\frac{\left( p-1 \right) }{I_{k}}{\int ^{{x}_{0}}_0} \frac{\left( x_{0}-x \right) X_{k}\left( x \right) \exp \left( -\frac{x}{u_{0}} \right) dx}{x_{0}+u_{0}} \, .\, \, \, \, \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makoveeva, E.V., Alexandrov, D.V. The bulk crystal growth in binary supercooled melts with allowance for heat removal. Eur. Phys. J. Spec. Top. 231, 1101–1106 (2022). https://doi.org/10.1140/epjs/s11734-022-00517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00517-6

Navigation