Skip to main content
Log in

Numerical simulation of unidimensional bubbly flow in linear and non-linear one parameter elastic liquid through a nozzles

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

A Correction to this article was published on 04 January 2023

This article has been updated

Abstract

This paper studies one dimensional bubbly cavitating flow of elastic fluids through micro sized nozzles of different shapes. Cavitating flows are applicable in wide range of applications in medical and engineering sciences, such as, the cleansing of teeth, ultrasound and cancer treatment. They are also responsible for erosion on metallic surfaces, damages to machinery, pumps etc. The above make advances in the field important and useful in reducing possible destructive effects of such flows. In current study two types of elastic fluid models namely neo-Hookean and linear elastic are considered. The nonlinear dynamics of bubbly mixture is modeled by incorporating the Rayleigh–Plesset equation. The system is modelled by nonlinear system of ordinary differential equations, which are reduced to non-dimensional form via suitable similarity transformations. The Runge–Kutta numerical technique of 4th order is utilized to solve the set of flow equations. The influences of various emerging parameters on bubble radius, velocity profile and pressure of bubble are illustrated graphically and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

Abbreviations

A :

Cross sectional area of nozzle m\(^{2}\)

We:

Weber Number

\(\eta \) :

Bubble Population

u :

Velocity of the fluid

R :

Radius of the bubble

\(\rho _{l} \) :

Density of the fluid

\(\alpha \) :

Void fraction of the bubbly mixture

\(C_\mathrm{{p}}\) :

Fluid pressure coefficient

P :

Fluid pressure

t :

Time

\(\mu \) :

Dynamic viscosity of the fluid

\(p_\mathrm{{g}}\) :

Non-condensable gas inside the bubble

L :

Length of the nozzle

Re:

Reynolds number

S :

Surface tension

x :

Eulerian coordinates

\(\sigma \) :

Cavitation number

\(\gamma \) :

Dimensionless modulus of elasticity

References

  1. L. Rayleigh VIII., Lond. Edinb. Dublin Philos. Mag. J. Sci. 34, 94 (1917)

  2. M.S. Plesset, J. Appl. Mech. 16, 277 (1949)

    Article  ADS  Google Scholar 

  3. R. Hickling, M.S. Plesset, Phys. Fluids 7, 7 (1964)

    Article  ADS  Google Scholar 

  4. L. Stricker, A. Prosperetti, D. Lohse, J. Acoust. Soc. Am. 130, 3243 (2011)

    Article  ADS  Google Scholar 

  5. C. Herring, Theory of the pulsations of the gas bubble produced by an underwater explosion (Columbia Univ, Division of National Defense Research, 1941)

  6. A. Prosperetti, A. Lezzi, J. Fluid Mech. 168, 457 (1986)

    Article  ADS  Google Scholar 

  7. J.R. Blake, D.C. Gibson, Ann. Rev. Fluid Mech. 19, 99 (1987)

    Article  ADS  Google Scholar 

  8. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids (Fluid mechanics, 1987)

  9. T. Hayat, S. Nadeem, S. Asghar, Appl. Math. Comput. 151, 153 (2004)

    MathSciNet  Google Scholar 

  10. T. Hayat, M. Sajid, I. Pop, Nonlinear Anal. Real World Appl. 9, 1811 (2008)

    Article  MathSciNet  Google Scholar 

  11. A. Majeed, A. Zeeshan, S.Z. Alamri, R. Ellahi, Neural Comput. Appl. 30, 1947 (2018)

    Article  Google Scholar 

  12. R. Ellahi, A. Zeeshan, F. Hussain, M. R. Safaei, Int. J. Numer. Methods Heat Fluid Flow (2020)

  13. A.T. Ellis, In ASME Cavitation Forum, 2 (1968)

  14. H.S. Fogler, J.D. Goddard, Phys. Fluids 13, 1135 (1970)

    Article  ADS  Google Scholar 

  15. H.S. Fogler, J.D. Goddard, J. Appl. Phys. 42, 259 (1971)

    Article  ADS  Google Scholar 

  16. A. Shima, T. Tsujino, Chem. Eng. Sci. 31, 863 (1976)

    Article  Google Scholar 

  17. J.S. Allen, R.A. Roy, J. Acoust. Soc. Am. 107, 3167 (2000)

    Article  ADS  Google Scholar 

  18. J.S. Allen, R.A. Roy, J. Acoust. Soc. Am. 108, 1640 (2000)

    Article  ADS  Google Scholar 

  19. R. Gaudron, M. T. Warnez, E. Johnsen, J. Fluid Mech. 766 (2015)

  20. R.F. Tangren, C.H. Dodge, H.S. Seifert, J. Appl. Phys. 20, (1949)

  21. C.E. Brennen, Cavitation and Bubble Dynamics (Cambridge University Press, Cambridge, 2014)

    MATH  Google Scholar 

  22. Y.C. Wang, C.E. Brennen, J. Fluids Eng. 166 (1998)

  23. C.F. Delale, G.H. Schnerr, J. Sauer, J. Fluid Mech. 427, 167 (2001)

    Article  ADS  Google Scholar 

  24. M. Sofroniou, R. Knapp, Wolfram Mathematica (Tutorial Collection, New York, 2008)

    Google Scholar 

  25. S. Liao, Advances in the Homotopy Analysis Method (World Scientific, Singapore, 2013)

    Google Scholar 

  26. M.A. Abbas, O.A. Bég, A. Zeeshan, A. Hobiny, M.M. Bhatti, Therm. Sci. Eng. Prog. 24, 100930 (2021)

    Article  Google Scholar 

  27. M. Zamoum, M. Kessal, Sci. Res. Essays 10, 367 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Zeeshan.

Additional information

The original online version of this article was revised: The author name Muhammad Shahid Nadeem was incorrectly written as Shahid Nadeem.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid Nadeem, M., Zeeshan, A. & Alzahrani, F. Numerical simulation of unidimensional bubbly flow in linear and non-linear one parameter elastic liquid through a nozzles. Eur. Phys. J. Spec. Top. 231, 571–581 (2022). https://doi.org/10.1140/epjs/s11734-022-00441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00441-9

Navigation