Skip to main content
Log in

Energy transport in one-dimensional oscillator arrays with hysteretic damping

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Energy transport in one-dimensional oscillator arrays has been extensively studied to date in the conservative case, as well as under weak viscous damping. When driven at one end by a sinusoidal force, such arrays are known to exhibit the phenomenon of supratransmission, i.e. a sudden energy surge above a critical driving amplitude. In this paper, we study one-dimensional oscillator chains in the presence of hysteretic damping, and include nonlinear stiffness forces that are important for many materials at high energies. We first employ Reid’s model of local hysteretic damping, and then study a new model of nearest neighbor dependent hysteretic damping to compare their supratransmission and wave packet spreading properties in a deterministic as well as stochastic setting. The results have important quantitative differences, which should be helpful when comparing the merits of the two models in specific engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Olejnik, J. Awrejcewicz, Coupled oscillators in identification of nonlinear damping of a real parametric pendulum. Mech. Syst. Signal Process. 98, 91–107 (2018)

    Article  ADS  Google Scholar 

  2. M. Scalerandi, Power laws and elastic nonlinearity in materials with complex microstructure. Phys. Lett. A 380(3), 413–421 (2016)

    Article  ADS  Google Scholar 

  3. B. Tang, M.J. Brennan, V. Lopes Jr., S. Da Silva, R. Ramlan, Using nonlinear jumps to estimate cubic stiffness nonlinearity: an experimental study. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 230(19), 3575–3581 (2016)

    Article  Google Scholar 

  4. W. Hu, Z. Yang, Y. Gu, X. Wang, The nonlinear aeroelastic characteristics of a folding wing with cubic stiffness. J. Sound Vib. 400, 22–39 (2017)

    Article  ADS  Google Scholar 

  5. A. Dall’Asta, L. Ragni, Experimental tests and analytical model of high damping rubber dissipating devices. Eng. Struct. 28(13), 1874–1884 (2006)

    Article  Google Scholar 

  6. Z. Xu, M.Y. Wang, T. Chen, Particle damping for passive vibration suppression: numerical modelling and experimental investigation. J. Sound Vib. 279(3–5), 1097–1120 (2005)

    Article  ADS  Google Scholar 

  7. S. Adhikari, J. Woodhouse, Identification of damping: part 1, viscous damping. J. Sound Vib. 243(1), 43–61 (2001)

    Article  ADS  Google Scholar 

  8. S. Adhikari, J. Woodhouse, Identification of damping: part 2, non-viscous damping. J. Sound Vib. 243(1), 63–88 (2001)

    Article  ADS  Google Scholar 

  9. J.A. Inaudi, J.M. Kelly, Linear hysteretic damping and the Hilbert transform. J. Eng. Mech. 121(5), 626–632 (1995)

    Article  Google Scholar 

  10. K.F. Chen, Y.H. Shen, The impulse response of a band-limited vibrator with rate-independent hysteretic damping. Acta Mech. 199, 17–28 (2008)

    Article  Google Scholar 

  11. N. Nakamura, Practical causal hysteretic damping. Earthq. Eng. Struct. Dynam. 36, 597–617 (2007)

    Article  Google Scholar 

  12. C. Spitas, M.M.S. Dwaikat, V. Spitas, Non-linear modelling of elastic hysteretic damping in the time domain. Arch. Mech. 72(4), 323–353 (2020)

    MathSciNet  MATH  Google Scholar 

  13. D. Montalvão, R.A.L.D. Cláudio, A.M.R. Ribeiro, J. Duarte-Silva, Experimental measurement of the complex Young’s modulus on a CFRP laminate considering the constant hysteretic damping model. Compos. Struct. 97, 91–98 (2013)

    Article  Google Scholar 

  14. H. Zhu, Y. Hu, Y. Pi, Transverse hysteretic damping characteristics of a serpentine belt: modeling and experimental investigation. J. Sound Vib. 333, 7019–7035 (2014)

    Article  ADS  Google Scholar 

  15. A. Bountis, K. Kaloudis, C. Spitas, Periodically forced nonlinear oscillators with hysteretic damping. J. Comput. Nonlinear Dynam. 15(12), 121006 (2020)

    Article  Google Scholar 

  16. T.J. Reid, Free vibration and hysteretic damping. Aeronaut. J. 60(544), 283–283 (1956)

  17. R.E.D. Bishop, The treatment of damping forces in vibration theory. Aeronaut. J. 59(539), 738–742 (1955)

    Article  Google Scholar 

  18. S.J. Elliott, M.G. Tehrani, R.S. Langley, Nonlinear damping and quasi-linear modelling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2051), 20140402 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  19. F. Geniet, J. Leon, Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. 89(13), 134102 (2002)

    Article  ADS  Google Scholar 

  20. J.E. Macías-Díaz, A. Bountis, Supratransmission in \(\beta \)-Fermi–Pasta–Ulam chains with different ranges of interactions. Commun. Nonlinear Sci. Numer. Simul. 63, 307–321 (2018)

    Article  MathSciNet  Google Scholar 

  21. J.E. Macías-Díaz, A. Bountis, H. Christodoulidi, Energy transmission in Hamiltonian systems of globally interacting particles with Klein–Gordon on-site potentials. Math. Eng. 1(2), 343–358 (2019)

    Article  MathSciNet  Google Scholar 

  22. J.E. Macías-Díaz, A. Bountis, Nonlinear supratransmission in quartic Hamiltonian lattices with globally interacting particles and on-site potentials. J. Comput. Nonlinear Dynam. 16(2), 021001 (2021)

    Article  Google Scholar 

  23. J. Bunyan, K.J. Moore, A. Mojahed, M.D. Fronk, M. Leamy, S. Tawfick, A.F. Vakakis, Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: experimental study. Phys. Rev. E 97(5), 052211 (2018)

    Article  ADS  Google Scholar 

  24. A. Mojahed, J. Bunyan, S. Tawfik, A.F. Vakakis, Tunable acoustic nonreciprocity in strongly nonlinear waveguides with asymmetry. Phys. Rev. Appl. 12, 034033 (2019)

    Article  ADS  Google Scholar 

  25. A. Mojahed, O.V. Gendelman, A.F. Vakakis, Breather arrest, localization, and acoustic non-reciprocity in dissipative nonlinear lattices. J. Acoust. Soc. Am. 146(1), 826–842 (2019)

    Article  ADS  Google Scholar 

  26. M. Strozzi, O.V. Gendelman, Breather arrest in a chain of damped oscillators with Hertzian contact. Wave Motion 106, 102779 (2021)

    Article  MathSciNet  Google Scholar 

  27. C. Tsitouras, Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying assumption. Comput. Math. Appl. 62(2), 770–775 (2011)

    Article  MathSciNet  Google Scholar 

  28. C. Rackauckas, Q. Nie, Differentialequations.jl—a performant and feature-rich ecosystem for solving differential equations in julia. J. Open Res. Softw. 5(1), 15–24 (2017)

  29. J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  Google Scholar 

  30. T. Dauxois, R. Khomeriki, S. Ruffo, Modulational instability in isolated and driven Fermi–Pasta–Ulam lattices. Eur. Phys. J. Spec. Top. 147(1), 3–23 (2007)

    Article  Google Scholar 

  31. B. Senyange, B.M. Manda, C. Skokos, Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices. Phys. Rev. E 98(5), 052229 (2018)

    Article  ADS  Google Scholar 

  32. B.M. Manda, B. Senyange, C. Skokos, Chaotic wave-packet spreading in two-dimensional disordered nonlinear lattices. Phys. Rev. E 101(3), 032206 (2020)

    Article  ADS  Google Scholar 

  33. M. Ciszak, O. Calvo, C. Masoller, C.R. Mirasso, R. Toral, Anticipating the response of excitable systems driven by random forcing. Phys. Rev. Lett. 90(20), 204102 (2003)

    Article  ADS  Google Scholar 

  34. F.N. Si, Q.X. Liu, J.Z. Zhang, L.Q. Zhou, Propagation of travelling waves in sub-excitable systems driven by noise and periodic forcing. Eur. Phys. J. B 60(4), 507–513 (2007)

    Article  ADS  Google Scholar 

  35. S.B. Yamgoué, S. Morfu, P. Marquié, Noise effects on gap wave propagation in a nonlinear discrete LC transmission line. Phys. Rev. E 75(3), 036211 (2007)

    Article  ADS  Google Scholar 

  36. B. Bodo, S. Morfu, P. Marquié, B.Z. Essimbi, Noise induced breather generation in a sine-Gordon chain. J. Stat. Mech. Theory Exp. 2009(01), P01026 (2009)

    Article  Google Scholar 

  37. S. Flach, A.V. Gorbach, Discrete breathers: advances in theory and applications. Phys. Rep. 467(1–3), 1–116 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to the referees for their very useful remarks, which helped us considerably improve our paper. TB acknowledges that the results of Sects. 2 and 5 were obtained under the scientific project no. 21-71-30011 of the Russian Science Foundation, and those of 3.1 and 3.2 under the Grant no. AP08856381 of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan, KazNU, Institute of Mathematics and Mathematical Modeling. CSp acknowledges partial support for this work by funds from the Ministry of Education and Science of Kazakhstan, in the context of the Nazarbayev University internal grant “Rapid response fixed astronomical telescope for gamma ray burst observation (RARE)” (OPCRP2020002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Skokos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bountis, T., Kaloudis, K., Shena, J. et al. Energy transport in one-dimensional oscillator arrays with hysteretic damping. Eur. Phys. J. Spec. Top. 231, 225–236 (2022). https://doi.org/10.1140/epjs/s11734-021-00420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00420-6

Navigation