Skip to main content
Log in

Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The nanofluid, composed of kerosene and tantalum and nickel nanoparticles, is propagating through a porous, elastic surface. The kerosene base fluid is incompressible and electrically conducting. The energy equation for this nanofluid is formulated taking into account the viscous dissipation. The mathematical modeling is performed with the help of a similarity transformation. The developed governing equations are numerically solved using the shooting technique and the Matlab software. The physical behavior of different parameters in the model is discussed through tabular and graphical forms. The present results are also compared to past results. The results indicate that the flow propagates faster for higher values of Darcy number and Tantalum nanoparticles and that the magnetic field opposes the fluid motion. Also that the thermal boundary layer decreases in the presence of Tantalum and Nickel nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, FED-Vol.231/MD-Vol. 66 (ASME, New York, 1995), pp. 99–105

  2. J. Sarkar, A critical review on convective heat transfer correlations of nanofluids. Renew. Sustain. Energy Rev. 15(6), 3271–3277 (2011)

    Google Scholar 

  3. W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater.2012 (2012)

  4. K.V. Wong, O. De Leon, Applications of nanofluids: current and future. Nanotechnol. Energy 105–132 (2017)

  5. D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications. Particuology 7(2), 141–150 (2009)

    Google Scholar 

  6. R. Saidur, K.Y. Leong, H.A. Mohammed, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15(3), 1646–1668 (2011)

    Google Scholar 

  7. H.A. Mohammed, G. Bhaskaran, N.H. Shuaib, R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew. Sustain. Energy Rev. 15(3), 1502–1512 (2011)

    Google Scholar 

  8. G. Huminic, A. Huminic, Application of nanofluids in heat exchangers: a review. Renew. Sustain. Energy Rev. 16(8), 5625–5638 (2012)

    MATH  Google Scholar 

  9. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57(2), 582–594 (2013)

    Google Scholar 

  10. L. Cheng, L. Liu, Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges. Int. J. Refrig. 36(2), 421–446 (2013)

    Google Scholar 

  11. E.E. Michaelides, Nanofluidics: thermodynamic and transport properties (Springer International Publishing, 2014)

  12. E.E. Michaelides, Nanoparticle diffusivity in narrow cylindrical pores. Int. J. Heat Mass Transf. 114, 607–612 (2017)

    Google Scholar 

  13. J. Sarkar, Performance of nanofluid-cooled shell and tube gas cooler in transcritical CO2 refrigeration systems. Appl. Therm. Eng. 31(14–15), 2541–2548 (2011)

    Google Scholar 

  14. C.J. Ho, J.B. Huang, P.S. Tsai, Y.M. Yang, On laminar convective cooling performance of hybrid water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a circular tube. Int. J. Heat Mass Transf. 54(11–12), 2397–2407 (2011)

    MATH  Google Scholar 

  15. D. Madhesh, R. Parameshwaran, S. Kalaiselvam, Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids. Exp. Therm. Fluid Sci. 52, 104–115 (2014)

    Google Scholar 

  16. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38, 54–60 (2012)

    Google Scholar 

  17. M. Baghbanzadeh, A. Rashidi, A.H. Soleimanisalim, D. Rashtchian, Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim. Acta 578, 53–58 (2014)

    Google Scholar 

  18. Y. He, S. Vasiraju, L. Que, Hybrid nanomaterial-based nanofluids for micropower generation. RSC Adv. 4(5), 2433–2439 (2014)

    ADS  Google Scholar 

  19. L.S. Sundar, M.K. Singh, A.C. Sousa, Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 52, 73–83 (2014)

    Google Scholar 

  20. Y. Xuan, H. Duan, Q. Li, Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Adv. 4(31), 16206–16213 (2014)

    ADS  Google Scholar 

  21. T.T. Baby, S. Ramaprabhu, Synthesis and nanofluid application of silver nanoparticles decorated graphene. J. Mater. Chem. 21(20), 9702–9709 (2011)

    Google Scholar 

  22. T.T. Baby, S. Ramaprabhu, Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale 3(5), 2208–2214 (2011)

    ADS  Google Scholar 

  23. L. Chen, W. Yu, H. Xie, Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites. Powder Technol. 231, 18–20 (2012)

    Google Scholar 

  24. S.S. Jyothirmayee Aravind, S. Ramaprabhu, Graphene wrapped multiwalled carbon nanotubes dispersed nanofluids for heat transfer applications. J. Appl. Phys. 112(12), 124304 (2012)

    ADS  Google Scholar 

  25. S.J. Aravind, S. Ramaprabhu, Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3(13), 4199–4206 (2013)

    ADS  Google Scholar 

  26. A.R. Abdel Fattah, T. Majdi, A.M. Abdalla, S. Ghosh, I.K. Puri, Nickel nanoparticles entangled in carbon nanotubes: novel ink for nanotube printing. ACS Appl. Mater. Interfaces 8(3), 1589–1593 (2016)

    Google Scholar 

  27. I. Bibi, S. Kamal, A. Ahmed, M. Iqbal, S. Nouren, K. Jilani, N. Nazar, M. Amir, A. Abbas, S. Ata, F. Majid, Nickel nanoparticle synthesis using Camellia sinensis as reducing and capping agent: growth mechanism and photo-catalytic activity evaluation. Int. J. Biol. Macromol. 103, 783–790 (2017)

    Google Scholar 

  28. H. Ni, J. Zhu, Z. Wang, H. Lv, Y. Su, X. Zhang, A brief overview on grain growth of bulk electrodeposited nanocrystalline nickel and nickel-iron alloys. Rev. Adv. Mater. Sci. 58(1), 98–106 (2019)

    Google Scholar 

  29. A.R. Mary, C.S. Sandeep, T.N. Narayanan, R. Philip, P. Moloney, P.M. Ajayan, M.R. Anantharaman, Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles. Nanotechnology 22(37), 375702 (2011)

    Google Scholar 

  30. Y. Cheng, M. Guo, M. Zhai, Y. Yu, J. Hu, Nickel nanoparticles anchored onto Ni foam for supercapacitors with high specific capacitance. J. Nanosci. Nanotechnol. 20(4), 2402–2407 (2020)

    Google Scholar 

  31. S. Kiran, M.A. Rafique, S. Iqbal, S. Nosheen, S. Naz, A. Rasheed, Synthesis of nickel nanoparticles using Citrullus colocynthis stem extract for remediation of Reactive Yellow 160 dye. Environ. Sci. Pollut. Res. 27(20), 32998–33007 (2020)

    Google Scholar 

  32. M.M. Barsan, T.A. Enache, N. Preda, G. Stan, N.G. Apostol, E. Matei, A. Kuncser, V.C. Diculescu, Direct immobilization of biomolecules through magnetic forces on Ni electrodes via Ni nanoparticles: applications in electrochemical biosensors. ACS Appl. Mater. Interfaces 11(16), 19867–19877 (2019)

    Google Scholar 

  33. D. Hill, A.R. Barron, S. Alexander, Comparison of hydrophobicity and durability of functionalized aluminium oxide nanoparticle coatings with magnetite nanoparticles-links between morphology and wettability. J. Colloid Interface Sci. 555, 323–330 (2019)

    ADS  Google Scholar 

  34. A. Sagasti, V. Palomares, J.M. Porro, I. Orúe, M.B. Sánchez-Ilárduya, A.C. Lopes, J. Gutiérrez, Magnetic, magnetoelastic and corrosion resistant properties of (Fe-Ni)-based metallic glasses for structural health monitoring applications. Materials 13(1), 57 (2020)

    ADS  Google Scholar 

  35. D. Wang, Y. Jia, Y. He, L. Wang, J. Fan, H. Xie, W. Yu, Enhanced photothermal conversion properties of magnetic nanofluids through rotating magnetic field for direct absorption solar collector. J. Colloid Interface Sci. 557, 266–275 (2019)

    ADS  Google Scholar 

  36. R.E. Abo-Elkhair, M.M. Bhatti, K.S. Mekheimer, Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (AuCu nanoparticles) with moderate Reynolds number: an expanding horizon. Int. Commun. Heat Mass Transf. 123, 105228 (2021)

    Google Scholar 

  37. G. Mohandas, N. Oskolkov, M.T. McMahon, P. Walczak, M. Janowski, Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp (Wars) 74(2), 188–196 (2014)

    Google Scholar 

  38. C.S. Tiwari, A. Pratap, P.K. Jha, Influence of size, shape and dimension on glass transition and Kauzmann temperature of silver (Ag) and tantalum (Ta) nanoparticles. J. Nanopart. Res. 22(8), 1–10 (2020)

  39. Z. Xiong, L. Wenbin, H. Qian, T. Lei, X. He, Y. Hu, P. Lei, Tantalum nanoparticles reinforced PCL scaffolds using direct 3D printing for bone tissue engineering. Front. Mater. 8, 10 (2021)

    ADS  Google Scholar 

  40. M. Hassan, M. Marin, R. Ellahi, S.Z. Alamri, Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids. Heat Transf. Res. 49(12), 1837–1848 (2018)

    Google Scholar 

  41. M.I. Afridi, I. Tlili, M. Goodarzi, M. Osman, N.A. Khan, Irreversibility analysis of hybrid nanofluid flow over a thin needle with effects of energy dissipation. Symmetry 11(5), 663 (2019)

    MATH  Google Scholar 

  42. S. Dinarvand, M.N. Rostami, R. Dinarvand, I. Pop, Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet. Int. J. Numer. Methods Heat Fluid Flow 29(11), 4408–4429 (2019)

    Google Scholar 

  43. A.J. Chamkha, A.S. Dogonchi, D.D. Ganji, Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 9(2), 025103 (2019)

    ADS  Google Scholar 

  44. I. Tlili, H.A. Nabwey, G.P. Ashwinkumar, N. Sandeep, 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Sci. Rep. 10(1), 1–13 (2020)

    Google Scholar 

  45. U. Khan, A. Shafiq, A. Zaib, D. Baleanu, Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects. Case Stud. Therm. Eng. 21, 100660 (2020)

    Google Scholar 

  46. P. Sreedevi, P.S. Reddy, A. Chamkha, Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Appl. Sci. 2(7), 1–15 (2020)

    Google Scholar 

  47. I. Waini, A. Ishak, I. Pop, Hybrid nanofluid flow towards a stagnation point on a stretching/shrinking cylinder. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  48. A. Rehman, Z. Salleh, Approximate analytical analysis of unsteady MHD mixed flow of non-Newtonian hybrid nanofluid over a stretching surface. Fluids 6(4), 138 (2021)

    ADS  Google Scholar 

  49. W. Jamshed, S.U. Devi, K.S. Nisar, Single phase based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor. Phys. Scr. 96(6), 065202 (2021)

    ADS  Google Scholar 

  50. L. Zhang, T. Nazar, M.M. Bhatti, E.E. Michaelides, Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under Lorentz force. Int. J. Numer. Methods Heat Fluid Flow (2021). https://doi.org/10.1108/HFF-02-2021-0103

    Article  Google Scholar 

  51. T.R. Mahapatra, A.S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 38(6), 517–521 (2002)

    ADS  Google Scholar 

  52. A. Ishak, R. Nazar, I. Pop, Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet. Meccanica 41(5), 509–518 (2006)

  53. R. Nazar, N. Amin, D. Filip, I. Pop, Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int. J. Eng. Sci. 42(11–12), 1241–1253 (2004)

  54. F.M. Ali, R. Nazar, N.M. Arifin, I. Pop, MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Appl. Math. Mech. 32(4), 409–418 (2011)

  55. J.C.R. Hunt, J.A. Shercliff, Magnetohydrodynamics at high Hartmann number. Annu. Rev. Fluid Mech. 3(1), 37–62 (1971)

    ADS  MATH  Google Scholar 

Download references

Funding

Lijun Zhang and M. M. Bhatti are supported by the National Natural Science Foundation of China No. 12172199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bhatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Bhatti, M.M., Michaelides, E.E. et al. Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. Eur. Phys. J. Spec. Top. 231, 521–533 (2022). https://doi.org/10.1140/epjs/s11734-021-00409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00409-1

Navigation