Skip to main content
Log in

Non-Darcy effect on boundary layer flow of TiO2-water/kerosene nanofluid over an extensible sheet

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

An analytical and numerical enquiry has been executed to measure up to the numerical data and graphical figures of two different types of nanofluid boundary layer flow in a non-Darcy porous medium with TiO2 nanoparticles in the fluid. The current surface is continuously protracted under a fixed law and the base liquids are water and kerosene. A mathematical model of the stream has been developed and after renovating the non-linear partial differential equations into a system of ODE, it has been solved both analytically by Differential Transformation Method (DTM) in cooperation with Padé Approximant and numerically by Runge-Kutta 4th order shooting technique. The aggregate of the relations between various flow parameters with the skin friction and the heat transfer rate of two different fluids have been gauged by correlation coefficients and the impact of the relation has been verified using Fisher’s t-Test. One of the most interesting verdicts of the progress survey is that the rate of heat transfer rate in the TiO2 -kerosene nanofluid is almost 83-88% higher than that of TiO2 -water nanofluid. Also the relation between various pertinent parameters with the Nusselt number and the skin friction coefficient are highly significant and they can be regulated according to our requirement by controlling these parameters of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Cheng, W.J. Minkowycz, J. Geophys. Res. 82, 2040 (1977)

    Article  ADS  Google Scholar 

  2. J.T. Hong, Y. Yamada, C.L. Tien, J. Heat Transf. 109, 356 (1987)

    Article  Google Scholar 

  3. F.C. Lai, F.A. Kulacki, Int. J. Heat Mass Transf. 113, 252 (1991)

    Google Scholar 

  4. R. Kandasamy, I. Muhaimin, A.K. Rosmila, Renew. Energy 64, 1 (2014)

    Article  Google Scholar 

  5. M. Lebeau, J.M. Konrad, Comput. Geotech. 73, 91 (2016)

    Article  Google Scholar 

  6. L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970)

    Article  Google Scholar 

  7. C.K. Chen, M.I. Char, J. Math. Anal. Appl. 135, 568 (1988)

    Article  MathSciNet  Google Scholar 

  8. G.C. Layek, S. Mukhopadhyay, S.K. Samad, Int. Commun. Heat Mass Transf. 34, 347 (2007)

    Article  Google Scholar 

  9. A. Ishak, R. Nazar, I. Pop, J. Eng. Math. 62, 23 (2008)

    Article  MathSciNet  Google Scholar 

  10. P.D. Weidman, E. Magyari, Acta Mech. 209, 353 (2009)

    Article  Google Scholar 

  11. R. Ahmed, M. Mustafa, T. Hayat, A. Alsaedi, J. Magn. Magn. Mater. 407, 69 (2016)

    Article  ADS  Google Scholar 

  12. M.T. Sk, K. Das, P.K. Kundu, Appl. Therm. Eng. 104, 758 (2016)

    Article  Google Scholar 

  13. J.K. Zhou, Differential Transformation and Its Applications for Electrical Circuits (Huarjung University Press, Wuuhahn, China, 1986) (in Chinese)

  14. M.J. Jang, C.L. Chen, Y.C. Liy, Appl. Math. Comput. 121, 261 (2001)

    MathSciNet  Google Scholar 

  15. I.H.A. Hassan, Chaos Solitions Fractals 36, 53 (2008)

    Article  ADS  Google Scholar 

  16. F. Kangalgil, F. Ayaz, Chaos Solitions Fractals 1, 464 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. H.A. Peker, O. Karaoğlu, G. Oturanç, Math. Comput. Appl. 16, 507 (2011)

    MathSciNet  Google Scholar 

  18. B. Kundu, R. Das, K.S. Lee, Procedia Eng. 127, 287 (2015)

    Article  Google Scholar 

  19. W. Raza, M.M. Haque, M. Muneer, D. Bahnemann, Arab. J. Chem. http://dx.doi.org/10.1016/j.arabjc.2015.09.002 (2015)

  20. Y. Qu, C. Sun, G. Sun, X. Kong, W. Zhang, Results Phys. 6, 100 (2016)

    Article  ADS  Google Scholar 

  21. J. Ma, C. Wang, H. He, Appl. Catal. B: Environ. 184, 28 (2016)

    Article  Google Scholar 

  22. S. Chibber, I. Ahmed, Biochem. Biophys. Rep. 6, 63 (2016)

    Google Scholar 

  23. W.M. El-Maghlany, M.M.A. Elazm, J. Taiwan Inst. Chem. Eng. 6, 259 (2016)

    Article  Google Scholar 

  24. B.Y. Lafouraki, A. Ramiar, Appl. Therm. Eng. 105, 675 (2016)

    Article  Google Scholar 

  25. M. Bahiraei, M. Alighardashi, J. Mol. Liq. 219, 117 (2016)

    Article  Google Scholar 

  26. X. Li, F. Zhong, X. Fan, X. Huai, J. Cai, Appl. Therm. Eng. 30, 1845 (2010)

    Article  Google Scholar 

  27. D.K. Agarwal, A. Vaidyanathan, S.S. Kumar, Appl. Therm. Eng. 84, 64 (2015)

    Article  Google Scholar 

  28. D.K. Agarwal, A. Vaidyanathan, S.S. Kumar, Exp. Therm. Fluid Sci. 71, 126 (2016)

    Article  Google Scholar 

  29. U. Khan, N. Ahmed, M. Asadullah, S.T. Mohyud-din, Propuls. Power Res. 4, 40 (2015)

    Article  Google Scholar 

  30. M. Rahman, M.S. Alam, M.K. Choudhury, Int. Commun. Heat Mass Transf. 39, 541 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Tausif Sk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tausif Sk, M., Das, K. & Kundu, P. Non-Darcy effect on boundary layer flow of TiO2-water/kerosene nanofluid over an extensible sheet. Eur. Phys. J. Plus 131, 314 (2016). https://doi.org/10.1140/epjp/i2016-16314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16314-1

Navigation