Skip to main content

Advertisement

Log in

Limit cycles and chaos induced by a nonlinearity with memory

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Inspired by the recent observation of memory effects in the nonlinear optical response of a coherently-driven micro-cavity, we investigate the effects of varying the memory time on the dynamics of optical and mechanical resonators. For a memory time that is commensurate with the inverse dissipation rate, both optical and mechanical resonators display stable limit cycles. In this regime, we evidence a cascade of period-doubling bifurcations as the memory time increases. For longer memory times, the mechanical resonator displays a regime of chaotic dynamics associated with a double scroll attractor. We also analyze the effects of the memory time on the spectrum and oscillation amplitude of the oscillator. Our results point to new opportunities for nonlinear energy harvesting, provided that a nonlinearity with memory can be implemented in mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O.V. Popovych, S. Yanchuk, P.A. Tass, Delay-and coupling-induced firing patterns in oscillatory neural loops. Phys. Rev. Lett. 107(22), 228102 (2011)

    Article  ADS  Google Scholar 

  2. Y. Kuang, Delay differential equations (University of California Press, 2012)

  3. J. Liu, Z. Zhang, Dynamics of a predator-prey system with stage structure and two delays. J. Nonlinear Sci. Appl. 9(5), 3074–3089 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. X.-M. Zhang, Recent developments in time-delay systems and their applications. Electronics 8(5), 552 (2019). https://doi.org/10.3390/electronics8050552

  5. A. Keane, B. Krauskopf, C.M. Postlethwaite, Climate models with delay differential equations. Chaos 27(11), 114309 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Terrien, B. Krauskopf, N.G.R. Broderick, R. Braive, G. Beaudoin, I. Sagnes, S. Barbay, Pulse train interaction and control in a microcavity laser with delayed optical feedback. Opt. Lett. 43(13), 3013–3016 (2018)

    Article  ADS  Google Scholar 

  7. A. Otto, W. Just, G. Radons, Nonlinear dynamics of delay systems: an overview. Philos. Trans. Roy. Soc. A 377(2153), 20180389 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. J.D. Hart, Larger, T.E. Murphy, R. Roy, Delayed dynamical systems: networks, chimeras and reservoir computing. Philos. Trans. Roy. Soc. A, 377(2153):20180123 (2019)

  9. J. Xu, P. Yu, Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks. Int. J. Bifurc Chaos Appl. Sci. Eng. 14(08), 2777–2798 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. L.P. Shayer, S.A. Campbell, Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61(2), 673–700 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. X. Liao, G. Chen, Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays. Int. J. Bifurc. Chaos Appl. Sci. Eng. 11(08), 2105–2121 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. U. An der Heiden, H.-O. Walther, Existence of chaos in control systems with delayed feedback. J. Differ. Equ. 47(2), 273–295 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. L.A. Safonov, E. Tomer, V.V. Strygin, Y. Ashkenazy, S. Havlin, Delay-induced chaos with multifractal attractor in a traffic flow model. Europhys. Lett. 57(2), 151 (2002)

    Article  MATH  ADS  Google Scholar 

  14. H. Wang, H. Hu, Z. Wang, Global dynamics of a Duffing oscillator with delayed displacement feedback. Int. J. Bifurc. Chaos Appl. Sci. Eng. 14(08), 2753–2775 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Sun, W. Xu, X. Yang, T. Fang, Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback. Chaos Solitons Fractals 27(3), 705–714 (2006)

    Article  MATH  ADS  Google Scholar 

  16. C. Jeevarathinam, S. Rajasekar, M.A.F. Sanjuán, Vibrational resonance in the Duffing oscillator with distributed time-delayed feedback. J. Appl. Nonlinear Dyn. 4(4), 391–404 (2015)

    Article  MATH  Google Scholar 

  17. J. Cantisán, M. Coccolo, J.M. Seoane, M.A.F. Sanjuán, Delay-induced resonance in the time-delayed Duffing oscillator. Int. J. Bifurc. Chaos Appl. Sci. Eng. 30(03), 2030007 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Coccolo, J. Cantisán, J.M. Seoane, S. Rajasekar, M.A.F. Sanjuán, Delay-induced resonance suppresses damping-induced unpredictability. Philos. Trans. Roy. Soc. A 379(2192), 20200232 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Louisell, Delay differential systems with time-varying delay: new directions for stability theory. Kybernetika 37(3), 239–251 (2001)

    MathSciNet  MATH  Google Scholar 

  20. T. Botmart, P. Niamsup, X. Liu, Synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1894–1907 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. A. Ardjouni, A. Djoudi, Existence of positive periodic solutions for a nonlinear neutral differential equation with variable delay. Appl. Math. E-Notes 12, 94–101 (2012)

    MathSciNet  MATH  Google Scholar 

  22. D. Müller, A. Otto, G. Radons, Laminar chaos. Phys. Rev. Lett. 120(8), 084102 (2018)

    Article  ADS  Google Scholar 

  23. D. Müller-Bender, A. Otto, G. Radons, Resonant Doppler effect in systems with variable delay. Philos. Trans. Roy. Soc. A 377(2153), 20180119 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. T. Insperger, G. Stépán, J. Turi, State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47(1), 275–283 (2007)

    MATH  Google Scholar 

  25. A. Keane, B. Krauskopf, H.A. Dijkstra, The effect of state dependence in a delay differential equation model for the El Niño southern oscillation. Philos. Trans. Roy. Soc. A 377(2153), 20180121 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. S. Ortín, M.C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C.R. Mirasso, J.M. Gutiérrez, A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci. Rep. 5(1), 1–11 (2015)

    Article  Google Scholar 

  27. J.D. Hart, L. Larger, T.E. Murphy, R. Roy, Delayed dynamical systems: networks, chimeras and reservoir computing. Philos. Trans. Roy. Soc. A 377(2153), 20180123 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. B. Penkovsky, X. Porte, M. Jacquot, L. Larger, D. Brunner, Coupled nonlinear delay systems as deep convolutional neural networks. Phys. Rev. Lett. 123(5), 054101 (2019)

    Article  ADS  Google Scholar 

  29. V.A. Pammi, K. Alfaro-Bittner, M.G. Clerc, S. Barbay, Photonic computing with single and coupled spiking micropillar lasers. IEEE J. Sel. Top. Quantum Electron. 26(1), 1–7 (2020)

    Article  Google Scholar 

  30. K. Harkhoe, G. Verschaffelt, A. Katumba, P. Bienstman, G. Van der Sande, Demonstrating delay-based reservoir computing using a compact photonic integrated chip. Opt. Express 28(3), 3086–3096 (2020)

    Article  ADS  Google Scholar 

  31. D. Brunner, L. Larger, M.C. Soriano, Nonlinear photonic dynamical systems for unconventional computing. arXiv preprint arXiv:2107.08874 (2021)

  32. A. Banerjee, J.D. Hart, R. Roy, E. Ott, Machine learning link inference of noisy delay-coupled networks with optoelectronic experimental tests. Phys. Rev. X 11(3), 031014 (2021)

    Google Scholar 

  33. V.V. Grigor’yants, A.A. Dvornikov, Y.B. Il’in, V.N. Konstantinov, V.A. Prokof’iev, G.M. Utkin, A laser diode with feedback using a fibre delay line as a stable-frequency signal generator and potential fibre sensor. Opt. Quantum Electron. 17(4), 263–267 (1985)

    Article  ADS  Google Scholar 

  34. X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, L. Shao, Optoelectronic oscillators (OEOS) to sensing, measurement, and detection. IEEE J. Quantum Electron. 52(1), 1–16 (2015)

    Article  Google Scholar 

  35. J. Yao, Optoelectronic oscillators for high speed and high resolution optical sensing. J. Light. Technol. 35(16), 3489–3497 (2017)

    Article  ADS  Google Scholar 

  36. L. Larger, J.-P. Goedgebuer, V. Udaltsov, Ikeda-based nonlinear delayed dynamics for application to secure optical transmission systems using chaos. C. R. Phys. 5(6), 669–681 (2004)

    Article  ADS  Google Scholar 

  37. C. Li, X. Liao, K.-W. Wong, Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D 194(3–4), 187–202 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, N. Li, Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser. IEEE J. Sel. Top. Quantum Electron. 17(5), 1220–1227 (2011)

    Article  ADS  Google Scholar 

  39. M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    Article  MATH  ADS  Google Scholar 

  40. K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30(2), 257–261 (1979)

    Article  ADS  Google Scholar 

  41. S. Lepri, G. Giacomelli, A. Politi, F.T. Arecchi, High-dimensional chaos in delayed dynamical systems. Physica D 70(3), 235–249 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. J.D. Hart, R. Roy, D. Müller-Bender, A. Otto, G. Radons, Laminar chaos in experiments: nonlinear systems with time-varying delays and noise. Phys. Rev. Lett. 123, 154101 (2019)

    Article  ADS  Google Scholar 

  43. F.T. Arecchi, G. Giacomelli, A. Lapucci, R. Meucci, Dynamics of a \({\rm co}_{2}\) laser with delayed feedback: the short-delay regime. Phys. Rev. A 43, 4997–5004 (1991)

    Article  Google Scholar 

  44. J. Sacher, D. Baums, P. Panknin, W. Elsässer, E.O. Göbel, Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback. Phys. Rev. A 45(3), 1893 (1992)

    Article  ADS  Google Scholar 

  45. P.M. Alsing, V. Kovanis, A. Gavrielides, T. Erneux, Lang and Kobayashi phase equation. Phys. Rev. A 53(6), 4429 (1996)

    Article  ADS  Google Scholar 

  46. V. Ahlers, U. Parlitz, W. Lauterborn, Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers. Phys. Rev. E 58(6), 7208 (1998)

    Article  ADS  Google Scholar 

  47. L.S. Tsimring, A. Pikovsky, Noise-induced dynamics in bistable systems with delay. Phys. Rev. Lett. 87(25), 250602 (2001)

    Article  ADS  Google Scholar 

  48. T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, A. Gavrielides, Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms. Phys. Rev. E 67(6), 066214 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  49. J. Houlihan, D. Goulding, T. Busch, C. Masoller, G. Huyet, Experimental investigation of a bistable system in the presence of noise and delay. Phys. Rev. Lett. 92(5), 050601 (2004)

    Article  ADS  Google Scholar 

  50. M.-Y. Kim, R. Roy, J.L. Aron, T.W. Carr, I.B. Schwartz, Scaling behavior of laser population dynamics with time-delayed coupling: theory and experiment. Phys. Rev. Lett. 94(8), 088101 (2005)

    Article  ADS  Google Scholar 

  51. T. Piwonski, J. Houlihan, T. Busch, G. Huyet, Delay-induced excitability. Phys. Rev. Lett. 95(4), 040601 (2005)

    Article  ADS  Google Scholar 

  52. S. Heiligenthal, T. Jüngling, O. D’Huys, D.A. Arroyo-Almanza, M.C. Soriano, I. Fischer, I. Kanter, W. Kinzel, Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings. Phys. Rev. E 88(1), 012902 (2013)

    Article  ADS  Google Scholar 

  53. A.M. Yacomotti, P. Monnier, F. Raineri, B.B. Bakir, C. Seassal, R. Raj, J.A. Levenson, Fast thermo-optical excitability in a two-dimensional photonic crystal. Phys. Rev. Lett. 97, 143904 (2006)

    Article  ADS  Google Scholar 

  54. H. Alaeian, M. Schedensack, C. Bartels, D. Peterseim, M. Weitz, Thermo-optical interactions in a dye-microcavity photon Bose–Einstein condensate. New J. Phys. 19(11), 115009 (2017)

    Article  ADS  Google Scholar 

  55. Z. Geng, K.J.H. Peters, A.A.P. Trichet, K. Malmir, R. Kolkowski, J.M. Smith, S.R.K. Rodriguez, Universal scaling in the dynamic hysteresis, and non-Markovian dynamics, of a tunable optical cavity. Phys. Rev. Lett. 124(15), 153603 (2020)

  56. K.J.H. Peters, Z. Geng, K. Malmir, J.M. Smith, S.R.K. Rodriguez, Extremely broadband stochastic resonance of light and enhanced energy harvesting enabled by memory effects in the nonlinear response. Phys. Rev. Lett. 126(21), 213901 (2021)

    Article  ADS  Google Scholar 

  57. F. Cottone, H. Vocca, L. Gammaitoni, Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)

    Article  ADS  Google Scholar 

  58. A.A.P. Trichet, P.R. Dolan, D.M. Coles, G.M. Hughes, J.M. Smith, Topographic control of open-access microcavities at the nanometer scale. Opt. Express 23(13), 17205–17216 (2015)

    Article  ADS  Google Scholar 

  59. S. Kiesewetter, R. Polkinghorne, B. Opanchuk, P.D. Drummond, xSPDE: extensible software for stochastic equations. SoftwareX 5, 12–15 (2016)

    Article  ADS  Google Scholar 

  60. L. Chua, M. Komuro, T. Matsumoto, The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986)

    Article  MATH  ADS  Google Scholar 

  61. B.P. Mann, N.D. Sims, Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1–2), 515–530 (2009)

    Article  ADS  Google Scholar 

  62. D.A.W. Barton, S.G. Burrow, L.R. Clare, Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. 132(2), 021009 (2010)

  63. G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(10), 102001 (2011)

    Article  ADS  Google Scholar 

  64. Z. Ghouli, M. Hamdi, F. Lakrad, M. Belhaq, Quasiperiodic energy harvesting in a forced and delayed Duffing harvester device. J. Sound Vib. 407, 271–285 (2017)

    Article  ADS  Google Scholar 

  65. M. Coccolo, G. Litak, J.M. Seoane, M.A.F. Sanjuán, Energy harvesting enhancement by vibrational resonance. Int. J. Bifurc. Chaos Appl. Sci. Eng. 24(06), 1430019 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme of the Netherlands Organisation for Scientific Research (NWO). We thank Carlos Pando Lambruschini and Panayotis Panayotaros for organizing the workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics, which stimulated this manuscript. We also thank Jason Smith, Aurelien Trichet, and Kiana Malmir for providing the concave mirror used for the experiments in Fig. 1. SRKR acknowledges an ERC Starting Grant with project number 85269.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. J. H. Peters or S. R. K. Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, K.J.H., Rodriguez, S.R.K. Limit cycles and chaos induced by a nonlinearity with memory. Eur. Phys. J. Spec. Top. 231, 247–254 (2022). https://doi.org/10.1140/epjs/s11734-021-00407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00407-3

Navigation