Skip to main content
Log in

Evolution of the electroweak structure functions of nucleons

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Electroweak scattering of neutrinos with hadronic targets reveal the underlying structure of protons and neutrons. Electroweak structure functions for nucleon targets are reviewed in the context of muon and tau neutrino and antineutrino scattering. Quantum chromodynamic, target mass and quark mass corrections and the regimes where they are relevant are discussed. In future experiments in the Large Hadron Collider forward region at CERN, there are prospects for future measurements for neutrino and antineutrino energies in the 100’s of GeV to TeV energy regime with a large flux of \(\nu _\tau +\overline{\nu }_\tau \) as well as the electron and muon flavors. At lower energies, DUNE will probe structure functions at the boundary of perturbative and nonperturbative regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.I. Friedman, H.W. Kendall, Ann. Rev. Nucl. Part. Sci. 22, 203–254 (1972)

    Article  ADS  Google Scholar 

  2. J.D. Bjorken, Phys. Rev. 179, 1547–1553 (1969)

    Article  ADS  Google Scholar 

  3. C.G. Callan Jr., D.J. Gross, Phys. Rev. Lett. 22, 156–159 (1969)

    Article  ADS  Google Scholar 

  4. P.A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020)

  5. J.M. Conrad, M.H. Shaevitz, T. Bolton, Rev. Mod. Phys. 70, 1341–1392 (1998)

    Article  ADS  Google Scholar 

  6. M. Tzanov, AIP Conf. Proc. 1222, 243–247 (2010)

    Article  ADS  Google Scholar 

  7. M. Sajjad Athar, J. G. Morfín, J. Phys. G 48, 034001 (2021)

  8. C.H. Albright, C. Jarlskog, Nucl. Phys. B 84, 467–492 (1975)

    Article  ADS  Google Scholar 

  9. S. Kretzer, M.H. Reno, Phys. Rev. D 66, 113007 (2002)

    Article  ADS  Google Scholar 

  10. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics, (Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, Cambridge 1996), pp. 1–435

  11. R. Brock et al., CTEQ Rev. Mod. Phys. 67, 157–248 (1995)

    Article  ADS  Google Scholar 

  12. C. Lehner et al., USQCD. Eur. Phys. J. A 55, 195 (2019)

  13. K. Cichy, M. Constantinou, Adv. High Energy Phys. 2019, 3036904 (2019)

    Article  Google Scholar 

  14. M. Constantinou, Eur. Phys. J. A 57, 77 (2021)

    Article  ADS  Google Scholar 

  15. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438–450 (1972)

    Google Scholar 

  16. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641–653 (1977)

    ADS  Google Scholar 

  17. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298–318 (1977)

    Article  ADS  Google Scholar 

  18. E. Eichten, I. Hinchliffe, K.D. Lane, C. Quigg, Rev. Mod. Phys. 56, 579–707 (1984)

    Article  ADS  Google Scholar 

  19. D.W. Duke, J.F. Owens, Phys. Rev. D 30, 49–54 (1984)

    Article  ADS  Google Scholar 

  20. A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, G. Watt, Eur. Phys. J. C 75, 132 (2015)

    Article  ADS  Google Scholar 

  21. R.D. Ball et al., NNPDF. JHEP 04, 040 (2015)

  22. S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, Phys. Rev. D 93, 033006 (2016)

  23. J. Gao, L. Harland-Lang, J. Rojo, Phys. Rept. 742, 1–121 (2018)

    Article  ADS  Google Scholar 

  24. M. Hirai, S. Kumano, T.H. Nagai, Phys. Rev. C 76, 065207 (2007)

  25. K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 04, 065 (2009)

    Article  ADS  Google Scholar 

  26. D. de Florian, R. Sassot, P. Zurita, M. Stratmann, Phys. Rev. D 85, 074028 (2012)

  27. K. Kovarik, A. Kusina, T. Jezo, D.B. Clark, C. Keppel, F. Lyonnet, J.G. Morfin, F.I. Olness, J.F. Owens, I. Schienbein et al., Phys. Rev. D 93, 085037 (2016)

  28. K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, Eur. Phys. J. C 77, 163 (2017)

    Article  ADS  Google Scholar 

  29. H. Khanpour, S. Atashbar Tehrani, Phys. Rev. D 93, 014026 (2016)

  30. R. Abdul Khalek et al. [NNPDF], Eur. Phys. J. C 79, 471 (2019)

  31. R. Abdul Khalek, J. J. Ethier, J. Rojo, G. van Weelden, JHEP 09, 183 (2020)

  32. S.A. Kulagin, R. Petti, Phys. Rev. C 90, 045204 (2014)

  33. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Phys. Rev. D 18, 3998 (1978)

    Article  ADS  Google Scholar 

  34. G. Altarelli, R.K. Ellis, G. Martinelli, Nucl. Phys. B 157, 461–497 (1979)

    Article  ADS  Google Scholar 

  35. W. Furmanski, R. Petronzio, Z. Phys. C 11, 293 (1982)

    Article  ADS  Google Scholar 

  36. E.B. Zijlstra, W.L. van Neerven, Nucl. Phys. B 383, 525–574 (1992)

    Article  ADS  Google Scholar 

  37. E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 297, 377–384 (1992)

    Article  ADS  Google Scholar 

  38. S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101–134 (2004)

    Article  ADS  Google Scholar 

  39. A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129–181 (2004)

    Article  ADS  Google Scholar 

  40. V. Bertone, S. Carrazza, J. Rojo, Comput. Phys. Commun. 185, 1647–1668 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Carrazza, A. Ferrara, D. Palazzo, J. Rojo, J. Phys. G 42, 057001 (2015)

  42. S. Alekhin, W. Altmannshofer, T. Asaka, B. Batell, F. Bezrukov, K. Bondarenko, A. Boyarsky, K.Y. Choi, C. Corral, N. Craig et al., Rept. Progr. Phys. 79, 124201 (2016)

  43. W. Bai, M.H. Reno, JHEP 02, 077 (2019)

    Article  ADS  Google Scholar 

  44. W. Bai, M. Diwan, M.V. Garzelli, Y.S. Jeong, M.H. Reno, JHEP 06, 032 (2020)

    Article  ADS  Google Scholar 

  45. R. Maciuła, A. Szczurek, JHEP 10, 135 (2020)

    Article  ADS  Google Scholar 

  46. F. Kling, arXiv:2105.08270 [hep-ph]

  47. Y.S. Jeong, M.H. Reno, Phys. Rev. D 82, 033010 (2010)

  48. V. Ansari, M. Sajjad Athar, H. Haider, S.K. Singh, F. Zaidi, Phys. Rev. D 102, 113007 (2020)

  49. A. Manohar, P. Nason, G.P. Salam, G. Zanderighi, Phys. Rev. Lett. 117, 242002 (2016)

  50. F. Giuli et al., xFitter Developers’ Team. Eur. Phys. J. C 77, 400 (2017)

  51. V. Bertone, S. Carrazza, PoS DIS2016, 031 (2016)

  52. O. Nachtmann, Nucl. Phys. B 63, 237–247 (1973)

    Article  ADS  Google Scholar 

  53. M.A.G. Aivazis, F.I. Olness, W.K. Tung, Phys. Rev. D 50, 3085–3101 (1994)

    Article  ADS  Google Scholar 

  54. M.A.G. Aivazis, J.C. Collins, F.I. Olness, W.K. Tung, Phys. Rev. D 50, 3102–3118 (1994)

    Article  ADS  Google Scholar 

  55. H. Georgi, H.D. Politzer, Phys. Rev. D 14, 1829 (1976)

    Article  ADS  Google Scholar 

  56. R. Barbieri, J.R. Ellis, M.K. Gaillard, G.G. Ross, Phys. Lett. B 64, 171–176 (1976)

    Article  ADS  Google Scholar 

  57. R. Barbieri, J.R. Ellis, M.K. Gaillard, G.G. Ross, Nucl. Phys. B 117, 50–76 (1976)

    Article  ADS  Google Scholar 

  58. S. Kretzer, M.H. Reno, Phys. Rev. D 69, 034002 (2004)

  59. I. Schienbein, V.A. Radescu, G.P. Zeller, M.E. Christy, C.E. Keppel, K.S. McFarland, W. Melnitchouk, F.I. Olness, M.H. Reno, F. Steffens et al., J. Phys. G 35, 053101 (2008)

  60. R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B 212, 29 (1983)

    Article  ADS  Google Scholar 

  61. A.D. Martin, W.J. Stirling, R.S. Thorne, Phys. Lett. B 636, 259–264 (2006)

    Article  ADS  Google Scholar 

  62. M. Gluck, E. Reya, Mod. Phys. Lett. A 22, 351–354 (2007)

    Article  ADS  Google Scholar 

  63. T. Gottschalk, Phys. Rev. D 23, 56 (1981)

    Article  ADS  Google Scholar 

  64. S. Kretzer, I. Schienbein, Phys. Rev. D 58, 094035 (1998)

  65. R.S. Thorne, R.G. Roberts, Phys. Rev. D 57, 6871–6898 (1998)

    Article  ADS  Google Scholar 

  66. R.S. Thorne, Phys. Rev. D 73, 054019 (2006)

  67. S. Forte, E. Laenen, P. Nason, J. Rojo, Nucl. Phys. B 834, 116–162 (2010)

    Article  ADS  Google Scholar 

  68. V. Bertone, A. Glazov, A. Mitov, A. Papanastasiou, M. Ubiali, JHEP 04, 046 (2018)

    Article  ADS  Google Scholar 

  69. R.D. Ball, M. Bonvini, L. Rottoli, JHEP 11, 122 (2015)

    Article  ADS  Google Scholar 

  70. J.C. Collins, Phys. Rev. D 58, 094002 (1998)

  71. F.I. Olness, R.J. Scalise, AIP Conf. Proc. 407, 320 (1997)

    Article  ADS  Google Scholar 

  72. M. Buza, W.L. van Neerven, Nucl. Phys. B 500, 301–324 (1997)

    Article  ADS  Google Scholar 

  73. J. Blümlein, A. Hasselhuhn, T. Pfoh, Nucl. Phys. B 881, 1–41 (2014)

    Article  ADS  Google Scholar 

  74. S. Alekhin, J. Blumlein, L. Caminadac, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Phys. Rev. D 91, 094002 (2015)

  75. E.L. Berger, J. Gao, C.S. Li, Z.L. Liu, H.X. Zhu, Phys. Rev. Lett. 116, 212002 (2016)

  76. J. Gao, JHEP 02, 026 (2018)

    Article  ADS  Google Scholar 

  77. J. Gao, T. J. Hobbs, P. M. Nadolsky, C. Sun, C.P. Yuan, arXiv:2107.00460 [hep-ph]

  78. H. Abreu et al., FASER. Eur. Phys. J. C 80, 61 (2020)

  79. H. Abreu et al. [FASER], arXiv:2001.03073 [physics.ins-det]

  80. C. Ahdida et al. [SHiP], arXiv:2002.08722 [physics.ins-det]

  81. N. Beni, M. Brucoli, S. Buontempo, V. Cafaro, G.M. Dallavalle, S. Danzeca, G. De Lellis, A. Di Crescenzo, V. Giordano, C. Guandalini et al., J. Phys. G 46, 115008 (2019)

  82. A. Pastore [SHiP], J. Phys. Conf. Ser. 1690, 012171 (2020)

  83. M. Anelli et al. [SHiP], arXiv:1504.04956 [physics.ins-det]

  84. K. Kodama et al., DONuT. Phys. Rev. D 78, 052002 (2008)

  85. N. Agafonova et al. [OPERA], Phys. Rev. Lett. 120, 211801 (2018). [erratum: Phys. Rev. Lett. 121 (2018), 139901]

  86. N. Agafonova et al., OPERA. Eur. Phys. J. C 80, 699 (2020)

  87. H. Abreu et al. [FASER], arXiv:2105.06197 [hep-ex]

  88. A. Ismail, R. Mammen Abraham, F. Kling, Phys. Rev. D 103, 056014 (2021)

  89. M. Tzanov et al., NuTeV. Phys. Rev. D 74, 012008 (2006)

  90. M.G. Aartsen et al., IceCube. Nature 551, 596–600 (2017)

  91. R. Abbasi et al. [IceCube], arXiv:2011.03560 [hep-ex]

  92. M. Bustamante, A. Connolly, Phys. Rev. Lett. 122, 041101 (2019)

  93. R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic, Phys. Rev. D 58, 093009 (1998)

  94. M.H. Reno, Nucl. Phys. B, Proc. Suppl. 151, 255–259 (2006)

    Article  ADS  Google Scholar 

  95. J. Jalilian-Marian, Int. J. Mod. Phys. E 27, 1840006 (2018)

    Article  ADS  Google Scholar 

  96. B. Abi et al. [DUNE], arXiv:2002.03005 [hep-ex]

  97. A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Phys. Rev. D 93, 114017 (2016)

  98. S. Alekhin, S.A. Kulagin, R. Petti, AIP Conf. Proc. 967, 215–224 (2007)

    Article  ADS  Google Scholar 

  99. M. Dasgupta, B.R. Webber, Phys. Lett. B 382, 273–281 (1996)

    Article  ADS  Google Scholar 

  100. F. Zaidi, H. Haider, M. Sajjad Athar, S. K. Singh, I. Ruiz Simo, Phys. Rev. D 101, 033001 (2020)

  101. W. Melnitchouk, R. Ent, C. Keppel, Phys. Rept. 406, 127–301 (2005)

    Article  ADS  Google Scholar 

  102. M.E. Christy, P.E. Bosted, Phys. Rev. C 81, 055213 (2010)

  103. C. Andreopoulos et al. [NuSTEC], arXiv:1907.13252 [hep-ph]

  104. U.K. Yang, A. Bodek, Phys. Rev. Lett. 82, 2467–2470 (1999)

    Article  ADS  Google Scholar 

  105. A. Bodek and U. K. Yang, PoS ICHEP2010, 292 (2010)

  106. A. Bodek, U. k. Yang, AIP Conf. Proc. 1222, 233–237 (2010)

  107. A. Bodek, U. K. Yang, Y. Xu, arXiv:2108.09240 [hep-ph]

  108. C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, J. Yarba, arXiv:1510.05494 [hep-ph]

  109. C. Juszczak, J.A. Nowak, J.T. Sobczyk, Nucl. Phys. B, Proc. Suppl. 159, 211–216 (2006)

    Article  ADS  Google Scholar 

  110. Y. Hayato, Acta Phys. Polon. B 40, 2477–2489 (2009)

    ADS  Google Scholar 

  111. O. Lalakulich, K. Gallmeister, U. Mosel, Phys. Rev. C 86, 014607 (2012)

  112. T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006)

    Article  ADS  Google Scholar 

  113. B. Badelek, J. Kwiecinski, Rev. Mod. Phys. 68, 445–471 (1996)

    Article  ADS  Google Scholar 

  114. A. Szczurek, V. Uleshchenko, Eur. Phys. J. C 12, 663–671 (2000)

    Article  ADS  Google Scholar 

  115. M.H. Reno, Phys. Rev. D 74, 033001 (2006)

  116. X.G. Wang, A.W. Thomas, J. Phys. G 47, 015102 (2020)

  117. L. Alvarez-Ruso et al., NuSTEC. Prog. Part. Nucl. Phys. 100, 1–68 (2018)

  118. H. Haider, F. Zaidi, M. Sajjad Athar, S. K. Singh, I. Ruiz Simo, Nucl. Phys. A 955, 58–78 (2016)

  119. F. Zaidi, H. Haider, M. Sajjad Athar, S. K. Singh, I. Ruiz Simo, Phys. Rev. D 99, 093011 (2019)

  120. S.A. Kulagin, R. Petti, Phys. Rev. D 76, 094023 (2007)

  121. L. Aliaga et al., MINERvA. Nucl. Instrum. Meth. A 743, 130–159 (2014)

  122. J. Mousseau et al., MINERvA. Phys. Rev. D 93, 071101 (2016)

Download references

Acknowledgements

This work was supported in part by US Department of Energy grant DE-SC-0010113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Hall Reno.

Appendices

NLO coefficient functions

The coefficient functions that multiply quark PDFs in the massless quark limit with \(\overline{\mathrm{MS}}\) renormalization are [33,34,35]

$$\begin{aligned} f_{2,q}(z)= & {} C_F\Bigl [ 2\Bigl (\frac{\ln (1-z)}{1-z}\Bigr )_+\nonumber \\&-\frac{3}{2}\Bigl (\frac{1}{1-z}\Bigr )_+ - (1+z)\ln (1-z)-\frac{1+z^2}{1-z}\ln z\nonumber \\+ & {} 3+2z-\Bigl (\frac{\pi ^2}{3}+\frac{9}{2}\Bigr )\delta (1-z)]\Bigr ] \end{aligned}$$
(33)
$$\begin{aligned} f_{1,q}(z)= & {} f_{2,q}(z) - C_F\bigl ( 2z\bigr ) \end{aligned}$$
(34)
$$\begin{aligned} f_{3,q}(z)= & {} f_{2,q}(z) - C_F \bigl ( 1+z\bigr ) \end{aligned}$$
(35)
$$\begin{aligned} f_{4,q} (z)= & {} C_F \bigl ( z\bigr ) \end{aligned}$$
(36)
$$\begin{aligned} f_{5,q} (z)= & {} f_{2,q}(z)\,, \end{aligned}$$
(37)

for \(C_F=4/3\). The coefficient functions that multiply the gluon PDF at NLO in the massless quark limit are

$$\begin{aligned} f_{2,G}(z)= & {} T_R\Bigl ( \bigl ( z^2+(1-z)^2 \bigr )\ln \frac{1-z}{z} + -8z^2+8z-1\Bigr ) \nonumber \\ \end{aligned}$$
(38)
$$\begin{aligned} f_{1,G}(z)= & {} f_{2,G}(z) - T_R \Bigl (4z(1-z)\Bigr ) \end{aligned}$$
(39)
$$\begin{aligned} f_{3,G}(z)= & {} 0 \end{aligned}$$
(40)
$$\begin{aligned} f_{4,G}(z)= & {} 2z(1-z) \end{aligned}$$
(41)
$$\begin{aligned} f_{5,G} (z)= & {} f_{2,G}(z)\,, \end{aligned}$$
(42)

where \(T_R=1/2\).

Target mass corrections to \(F_4\), \(F_5\) and \(F_L\)

The target mass corrections to \(F_4\) and \(F_5\) can be written [58, 59]

$$\begin{aligned} F_{4}^{\mathrm{TMC}}(x,Q^{2})= & {} \frac{1}{1+M^2\xi ^{2}/Q^2}F_{4}^{(0)}(\xi ,Q^2) \nonumber \\&+ \frac{x^3 M^4}{Q^4 r^3} F_2^{(0)}(\xi ,Q^2) -\frac{2 M^2 x^2}{Q^2 r^2}F_5^{(0)}(\xi ,Q^2)\nonumber \\- & {} \frac{2M^{4}x^{4}}{Q^{4}r^{4}}(2-\frac{M^2 \xi ^2}{Q^2 })h_{2}(\xi ,Q^2)+\frac{x^2 M^2}{Q^2 r^3} h_5(\xi ,Q^2) \nonumber \\+ & {} \frac{2M^{4}x^{3}}{Q^{4}r^{5}}(1-\frac{2M^2x^2}{Q^2})g_{2}(\xi ,Q^2)\, , \end{aligned}$$
(43)
$$\begin{aligned} F_{5}^{\mathrm{TMC}}(x,Q^{2})= & {} \frac{x}{\xi r^{2}}F_{5}^{(0)}(\xi ,Q^2) - \frac{M^2 x^2}{Q^2 \xi r^3}F_{2}^{(0)}(\xi ,Q^2)\nonumber \\+ & {} \frac{M^{2}x^{2}}{Q^{2}r^{3}}h_{5}(\xi ,Q^2) +\frac{2M^2 x^2}{Q^2 r^4}(1-\frac{M^2 x\xi }{Q^2}) h_2(\xi ,Q^2)\nonumber \\+ & {} \frac{6M^{4}x^{3}}{Q^{4}r^{5}}g_{2}(\xi ,Q^2)\,, \end{aligned}$$
(44)

where

$$\begin{aligned} h_{5}(\xi ,Q^{2})= & {} \int _{\xi }^{1}du\ \frac{2F_{5}^{(0)}(u,Q^{2})}{u}\,. \end{aligned}$$
(45)

For reference, the longitudinal structure function is:

$$\begin{aligned} F_{L}^{\mathrm{TMC}}(x,Q^{2})= & {} r^{2}F_{2}^{\mathrm{TMC}}(x,Q^{2}) \nonumber \\&-2xF_{1}^{\mathrm{TMC}}(x,Q^{2}) \nonumber \\= & {} \frac{x^{2}}{\xi ^{2}r} \left[ F_{2}^{(0)}(\xi ,Q^2)-2\xi F_{1}^{(0)}(\xi ,Q^2)\right] \nonumber \\&+\frac{4M^{2}x^{3}}{Q^{2}r^{2}}h_{2}(\xi ,Q^2) +\frac{8M^{4}x^{4}}{Q^{4}r^{3}}g_{2}(\xi ,Q^2) \nonumber \\\simeq & {} \frac{x^{2}}{\xi ^{2}r}F_{L}^{(0)}(\xi ,Q^2)\nonumber \\&+\frac{4M^{2}x^{3}(1-\xi )^2}{Q^{2}\xi r^{2}}F_2^{(0)}(\xi ,Q^2)\,, \end{aligned}$$
(46)

where \(F_L{(0)}(\xi ,Q^2)=F_2^{(0)}(\xi ,Q^2)-2\xi F_1^{(0)}(\xi ,Q^2)\). Care must be taken not to mix the M dependent relation in the first line of eq. (46) and the relation between \(F_1^{(0)}\), \(F_2^{(0)}\) and \(F_L^{(0)}\) when \(F_2\) and \(F_L\) are calculated directly rather than \(F_1\) and \(F_2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reno, M.H. Evolution of the electroweak structure functions of nucleons. Eur. Phys. J. Spec. Top. 230, 4419–4431 (2021). https://doi.org/10.1140/epjs/s11734-021-00288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00288-6

Navigation