Skip to main content

Advertisement

Log in

The effect of time series distance functions on functional climate networks

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

A Correction to this article was published on 01 December 2021

This article has been updated

Abstract

Complex network theory provides an important tool for the analysis of complex systems such as the Earth’s climate. In this context, functional climate networks can be constructed using a spatiotemporal climate dataset and a suitable time series distance function. The resulting coarse-grained view on climate variability consists of representing distinct areas on the globe (i.e., grid cells) by nodes and connecting pairs of nodes that present similar time series. One fundamental concern when constructing such a functional climate network is the definition of a metric that captures the mutual similarity between time series. Here we study systematically the effect of 29 time series distance functions on functional climate network construction based on global temperature data. We observe that the distance functions previously used in the literature commonly generate very similar networks while alternative ones result in rather distinct network structures and reveal different long-distance connection patterns. These patterns are highly important for the study of climate dynamics since they generally represent pathways for the long-distance transportation of energy and can be used to forecast climate variability on subseasonal to interannual or even decadal scales. Therefore, we propose the measures studied here as alternatives for the analysis of climate variability and to further exploit their complementary capability of capturing different aspects of the underlying dynamics that may help gaining a more holistic empirical understanding of the global climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. H.A. Dijkstra, E. Hernández-García, C. Masoller, M. Barreiro, Networks in Climate (Cambridge University Press, Cambridge, 2019)

    Google Scholar 

  2. R.V. Donner, M. Wiedermann, J.F. Donges, Complex network techniques for climatological data analysis, in Nonlinear and Stochastic Climate Dynamics, 1st edn., ed. by C. Franzke, T. O’Kane (Cambridge University Press, Cambridge, 2017), pp. 159–183

    Google Scholar 

  3. N. Boers et al., Prediction of extreme floods in the eastern central andes based on a complex networks approach. Nat. Commun. 5, 5199 (2014)

    ADS  Google Scholar 

  4. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Complex networks in climate dynamics. Eur. Phys. J. Special Top. 174, 157–179 (2009)

    ADS  Google Scholar 

  5. J. Fan, J. Meng, Y. Ashkenazy, S. Havlin, H.J. Schellnhuber, Network analysis reveals strongly localized impacts of el niño. Proc. Natl. Acad. Sci. 114, 7543–7548 (2017)

    ADS  Google Scholar 

  6. K. Steinhaeuser, N.V. Chawla, A.R. Ganguly, Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat. Anal. Data Min. 4, 497–511 (2011)

    MathSciNet  MATH  Google Scholar 

  7. A. Tsonis, P. Roebber, The architecture of the climate network. Phys. A 333, 497–504 (2004)

    Google Scholar 

  8. L.N. Ferreira et al., Spatiotemporal data analysis with chronological networks. Nat. Commun. 11, 4036 (2020)

    ADS  Google Scholar 

  9. O.C. Guez, A. Gozolchiani, S. Havlin, Influence of autocorrelation on the topology of the climate network. Phys. Rev. E 90, 062814 (2014)

    ADS  Google Scholar 

  10. A.A. Tsonis, K.L. Swanson, Topology and predictability of El Niño and La Niña networks. Phys. Rev. Lett. 100, 228502 (2008)

    ADS  Google Scholar 

  11. M. Paluš, Linked by Dynamics: Wavelet-Based Mutual Information Rate as a Connectivity Measure and Scale-Specific Networks (Springer International Publishing, Cham, 2018), pp. 427–463. https://doi.org/10.1007/978-3-319-58895-7_21

    Book  Google Scholar 

  12. S.-H. Cha, Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007)

    Google Scholar 

  13. M.M. Deza, E. Deza, Encyclopedia of Distances. Encyclopedia of Distances (Springer, New York, 2009)

    MATH  Google Scholar 

  14. P. Esling, C. Agon, Time-series data mining. ACM Comput. Surv. 45, 1–34 (2012)

    MATH  Google Scholar 

  15. L.N. Ferreira, L. Zhao, Time series clustering via community detection in networks. Inf. Sci. 326, 227–242 (2016)

    MathSciNet  MATH  Google Scholar 

  16. A. Barabási, M. Pósfai, Network Science (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  17. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  18. L.F. da Costa, F.A. Rodrigues, G. Travieso, P.R.V. Boas, Characterization of complex networks: a survey of measurements. Adv. Phys. 56, 167–242 (2007)

    ADS  Google Scholar 

  19. M. Wiedermann, J.F. Donges, J. Kurths, R.V. Donner, Mapping and discrimination of networks in the complexity-entropy plane. Phys. Rev. E 96, 042304 (2017)

    ADS  Google Scholar 

  20. S. Bialonski, M.-T. Horstmann, K. Lehnertz, From brain to earth and climate systems: small-world interaction networks or not? Chaos 20, 013134 (2010)

    ADS  MathSciNet  Google Scholar 

  21. S. Bialonski, M. Wendler, K. Lehnertz, Unraveling spurious properties of interaction networks with tailored random networks. PLoS One 6, e22826 (2011)

    ADS  Google Scholar 

  22. J. Hlinka, D. Hartman, M. Paluš, Small-world topology of functional connectivity in randomly connected dynamical systems. Chaos 22, 033107 (2012)

    ADS  MathSciNet  Google Scholar 

  23. M. Wiedermann, J.F. Donges, J. Kurths, R.V. Donner, Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes. Phys. Rev. E 93, 042308 (2016)

    ADS  Google Scholar 

  24. M. Paluš, D. Hartman, J. Hlinka, M. Vejmelka, Discerning connectivity from dynamics in climate networks. Nonlinear Process. Geophys. 18, 751–763 (2011). (https://npg.copernicus.org/articles/18/751/2011/)

  25. S. Nigam, S. Baxter, General circulation of the atmosphere | teleconnections, in Encyclopedia of Atmospheric Sciences, 2nd edn., ed. by G.R. North, J. Pyle, F. Zhang (Academic Press, Oxford, 2015), pp. 90–109

    Google Scholar 

  26. D. Zhou, A. Gozolchiani, Y. Ashkenazy, S. Havlin, Teleconnection paths via climate network direct link detection. Phys. Rev. Lett. 115, 268501 (2015)

    ADS  Google Scholar 

  27. M.A. Alexander et al., The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002)

    ADS  Google Scholar 

  28. N. Boers et al., Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, 373–7 (2019)

    ADS  Google Scholar 

  29. K. Yamasaki, A. Gozolchiani, S. Havlin, Climate networks around the globe are significantly affected by El Niño. Phys. Rev. Lett. 100, 228501 (2008)

    ADS  Google Scholar 

  30. E. Kalnay et al., The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996)

    ADS  Google Scholar 

  31. Y. Berezin, A. Gozolchiani, O. Guez, S. Havlin, Stability of climate networks with time. Sci. Rep. 2, 666 (2012)

    ADS  Google Scholar 

  32. J.I. Deza, M. Barreiro, C. Masoller, Assessing the direction of climate interactions by means of complex networks and information theoretic tools. Chaos 25, 033105 (2015)

    ADS  Google Scholar 

  33. A. Bracco, F. Falasca, A. Nenes, I. Fountalis, C. Dovrolis, Advancing climate science with knowledge-discovery through data mining. npj Clim. Atmosp. Sci. 1, 20174 (2018)

    Google Scholar 

  34. A. Pelan, K. Steinhaeuser, N. V. Chawla, D. A. de Alwis Pitts, A.R. Ganguly, Empirical comparison of correlation measures and pruning levels in complex networks representing the global climate system. In 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp 239–245 (2011)

  35. F. Wolf, J. Bauer, N. Boers, R.V. Donner, Event synchrony measures for functional climate network analysis: a case study on South American rainfall dynamics. Chaos 30, 033102 (2020)

    ADS  MathSciNet  Google Scholar 

  36. K. Yamasaki, A. Gozolchiani, S. Havlin, Climate networks based on phase synchronization analysis track El-Niño. Prog. Theor. Phys. Suppl. 179, 178–188 (2009)

    ADS  MATH  Google Scholar 

  37. D.J. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series. In KDD Workshop, pp 359–370 (AAAI Press, 1994)

  38. G.E. Batista, X. Wang, E.J. Keogh, A complexity-invariant distance measure for time series. In Proceedings of the 2011 SIAM International Conference on Data Mining, pp 699–710 (SIAM, 2011)

  39. E. Frentzos, K. Gratsias, Y. Theodoridis, Index-based most similar trajectory search. In 2007 IEEE 23rd International Conference on Data Engineering, pp 816–825 (2007)

  40. C.S. Möller-Levet, F. Klawonn, K.-H. Cho, O. Wolkenhauer, Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points (Springer, Berlin, 2003), pp. 330–340

    Google Scholar 

  41. L. Chen, M. T. Özsu, V. Oria, Robust and fast similarity search for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD’05, pp 491–502 (ACM, New York, 2005)

  42. M. Vlachos, G. Kollios, D. Gunopulos, Discovering similar multidimensional trajectories. In 18th International Conference on Data Engineering, 2002. Proceedings, pp 673–684 (2002)

  43. A.D. Chouakria, P.N. Nagabhushan, Adaptive dissimilarity index for measuring time series proximity. Adv. Data Anal. Classif. 1, 5–21 (2007)

    MathSciNet  MATH  Google Scholar 

  44. M. Meilă, Comparing Clusterings by the Variation of Information (Springer, Berlin, 2003), pp. 173–187

    MATH  Google Scholar 

  45. D.N. Reshef et al., Detecting novel associations in large data sets. Science 334, 1518–1524 (2011)

    Article  ADS  Google Scholar 

  46. R. Agrawal, C. Faloutsos, A. Swami, Efficient Similarity Search in Sequence Databases (Springer, Berlin, 1993), pp. 69–84

    Google Scholar 

  47. P. Galeano, D.P. Peña, Multivariate analysis in vector time series. Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo 4, 383–403 (2000)

    MathSciNet  MATH  Google Scholar 

  48. D.C. de Lucas, Classification Techniques for Time Series and Functional Data (Universidad Carlos III de Madrid, Madrid, 2003). (Ph.D. thesis)

    Google Scholar 

  49. J. Caiado, N. Crato, D. Peña, A periodogram-based metric for time series classification. Comput. Stat. Data Anal. 50, 2668–2684 (2006)

    MathSciNet  MATH  Google Scholar 

  50. R. Cilibrasi, P.M.B. Vitanyi, Clustering by compression. IEEE Trans. Inf. Theory 51, 1523–1545 (2005)

    MathSciNet  MATH  Google Scholar 

  51. E. Keogh et al., Compression-based data mining of sequential data. Data Min. Knowl. Disc. 14, 99–129 (2007)

    MathSciNet  Google Scholar 

  52. M. Kendall, A. Stuart, The Advanced Theory of Statistics, vol. 3 (Charles Griffin and Co., Ltd, London, 1983)

    MATH  Google Scholar 

  53. A. Bhattacharyya, On a measure of divergence between two multinomial populations. Sankhyā Indian J. Stat. 1933–1960(7), 401–406 (1946)

    MathSciNet  MATH  Google Scholar 

  54. L.R. Dice, Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Google Scholar 

  55. J.C. Gower, A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971)

    Google Scholar 

  56. T. Sørensen, A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Biologiske Skrifter // Det Kongelige Danske Videnskabernes Selskab (I kommission hos E. Munksgaard (1948)

  57. T. Tanimoto, An Elementary Mathematical Theory of Classification and Prediction (International Business Machines Corporation, Endicott, 1958)

    Google Scholar 

  58. V.I. Levenshtein, Binary codes capable of correcting deletions. Insertions and reversals. Soviet Phys. Doklady 10, 707–710 (1966)

    ADS  MathSciNet  Google Scholar 

  59. M.D. Humphries, K. Gurney, Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 3, 1–10 (2008)

    Google Scholar 

  60. M.H. Glantz, R.W. Katz, N. Nicholls et al., Teleconnections Linking Worldwide Climate Anomalies, vol. 535 (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  61. J. Hlinka et al., Small-world bias of correlation networks: from brain to climate. Chaos Interdiscip. J. Nonlinear Sci. 27, 035812 (2017). https://doi.org/10.1063/1.4977951

    Article  MathSciNet  Google Scholar 

  62. L.A.N. Amaral, A. Scala, M. Barthélémy, H.E. Stanley, Classes of small-world networks. Proc. Natl. Acad. Sci. 97, 11149–11152 (2000)

    ADS  Google Scholar 

  63. A. Radebach, R.V. Donner, J. Runge, J.F. Donges, J. Kurths, Disentangling different types of El Niño episodes by evolving climate network analysis. Phys. Rev. E 88, 052807 (2013)

    ADS  Google Scholar 

  64. Z. Liu, M. Alexander, Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 45, 1–34 (2007)

    Google Scholar 

  65. J. Picaut, F. Masia, Y. Du Penhoat, An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277, 663–666 (1997)

    Google Scholar 

  66. D. Gong, S. Wang, Definition of Antarctic oscillation index. Geophys. Res. Lett. 26, 459–462 (1999)

    ADS  Google Scholar 

  67. K.C. Mo, R.W. Higgins, The Pacific-South American modes and tropical convection during the Southern Hemisphere winter. Mon. Weather Rev. 126, 1581–1596 (1998)

    ADS  Google Scholar 

  68. K.C. Mo, J.N. Paegle, The pacific-south American modes and their downstream effects. Int. J. Climatol. 21, 1211–1229 (2001)

    Google Scholar 

  69. J.A. Renwick, M.J. Revell, Blocking over the south pacific and Rossby wave propagation. Mon. Weather Rev. 127, 2233–2247 (1999)

    ADS  Google Scholar 

  70. D.W. Thompson, J.M. Wallace, Annular modes in the extratropical circulation. Part i: month-to-month variability. J. Clim. 13, 1000–1016 (2000)

    ADS  Google Scholar 

  71. J.W. Kidson, Indices of the Southern Hemisphere zonal wind. J. Clim. 1, 183–194 (1988)

    ADS  Google Scholar 

  72. F.C. Vasconcellos, I.F. Cavalcanti, Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode. Atmos. Sci. Lett. 11, 21–26 (2010)

    Google Scholar 

  73. P. Aceituno, On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate. Mon. Weather Rev. 116, 505–524 (1988)

    ADS  Google Scholar 

  74. S.C. Chan, S.K. Behera, T. Yamagata, Indian Ocean dipole influence on South American rainfall. Geophys. Res. Lett. 35 (2008)

  75. N. Saji, T. Yamagata, Possible impacts of Indian ocean dipole mode events on global climate. Clim. Res. 25, 151–169 (2003)

    Google Scholar 

  76. T. Yamagata et al., Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth’s Clim. Ocean-Atmos. Interact. Geophys. Monogr. 147, 189–212 (2004)

    Google Scholar 

  77. S.K. Behera et al., Paramount impact of the Indian Ocean dipole on the East African short rains: a CGCM study. J. Clim. 18, 4514–4530 (2005)

    ADS  Google Scholar 

  78. N. Saji, B. Goswami, P. Vinayachandran, T. Yamagata, A dipole mode in the tropical Indian Ocean. Nature 401, 360 (1999)

    ADS  Google Scholar 

  79. R Core Team, R: A, Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2017) https://www.R-project.org/

  80. G. Csardi, T. Nepusz, The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)

    Google Scholar 

  81. P. Montero, J. Vilar, TSclust: an R package for time series clustering. J. Stat. Softw. 62, 1–43 (2014)

    Google Scholar 

  82. U. Mori, A. Mendiburu, J. A. Lozano, Distance measures for time series in R: the TSdist package. R J.8, 451–459 (2016). https://journal.r-project.org/archive/2016/RJ-2016-058/index.html

Download references

Acknowledgements

This research received financial support from the São Paulo Research Foundation (FAPESP) Grants 2017/05831-9 and 2015/50122-0. The authors also acknowledge the National Council for Scientific and Technological Development (CNPq) for its financial support. This research was developed using computational resources from the Center for Mathematical Sciences Applied to Industry (CeMEAI) funded by FAPESP (Grant 2013/07375-0). RVD has received funding by the German Federal Ministry for Education and Research (BMBF) via the BMBF Young Investigators Group CoSy-CC\(^2\) (Complex Systems Approaches to Understanding Causes and Consequences of Past, Present and Future Climate Change, Grant no. 01LN1306A), the Belmont Forum/JPI Climate project GOTHAM (Globally Observed Teleconnections and Their Representation in Hierarchies of Atmospheric Models, Grant no. 01LP16MA) and the JPI Climate/JPI Oceans project ROADMAP (The Role of Ocean Dynamics and Ocean-Atmosphere Interactions in Driving ClimAte Variations and Future Projections of Impact-Relevant Extreme Events, Grant no. 01LP2002B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo N. Ferreira.

Ethics declarations

Computer code availability

The method and the experiments in this paper were implemented using the R programming language [79] with the packages igraph [80], TSclust [81], and TSdist [82]. The R software, the packages, and our implementation are all open-source (GPL) and freely available for download. Our source codes can be obtained at https://lnferreira.github.io/climate_networks_R .

Appendices

Definitions of time series distance functions

See Tables 2, 3 and 4.

Table 4 Time series distance functions used in this work
Table 5 Time series distance functions used in this work
Table 6 Global measures from networks created with percentile \(p=0.001\)
Table 7 Global measures from networks created with percentile \(p=0.01\)
Table 8 Continued
Table 9 Global measures from networks created with percentile \(p=0.05\)

Climate network characteristics

We present in Tables 5, 6, 7 and 8 the values of all network measures obtained for the climate networks constructed for the four edge densities \(p=\) 0.001, 0.01, 0.05 and 0.1.

Table 10 Global measures from networks created with percentile \(p=0.1\)

Network distance matrices

See Fig. 7.

Fig. 7
figure 7

Network clustering according to the similarity of the respective network topology. For every distance function, we constructed climate networks considering four edge densities: \(p=\) 0.001, 0.01, 0.05 and 0.1. Then, we calculated the Hamming distances between all pairs of networks and clustered them using hierarchical clustering (Ward’s method). The results show that PDF-based distance functions form a cluster and generate similar networks independent of p. For the other measures, when p increases, the networks were very different except in two small groups. The first group is formed by correlation, cross-correlation, MI and MIC. The other group is formed by Manhattan, Euclidean and Fourier distances

Teleconnections

See Fig. 8.

Fig. 8
figure 8

Teleconnections for all the 29 distance functions. We considered only the 500 strongest teleconnections (nodes distance greater than \(5000\,{\text {km}}\))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, L.N., Ferreira, N.C.R., Macau, E.E.N. et al. The effect of time series distance functions on functional climate networks. Eur. Phys. J. Spec. Top. 230, 2973–2998 (2021). https://doi.org/10.1140/epjs/s11734-021-00274-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00274-y

Navigation