Skip to main content
Log in

Design and FPGA implementation of TRNG based on a new multi-wing attractor in Lorenz chaotic system

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper presents a new way of designing a multi-wing chaotic system. The proposed design is based on 3D continuous chaotic system of Lorenz, improved by introducing a saw-tooth and sine functions. The basic proprieties of the proposed system are analyzed using of equilibrium points, phase portrait, Lyapunov exponent, and bifurcation diagram. Furthermore, the modeling of the design is based on Euler method using hardware description language (VHDL) and validated on Xilinx Virtex-II-Pro FPGA platform. Fixed-point arithmetic coding is employed to represented data on 32 bits (16Q16). Finally, the proposed system used to design a new chaos-based TRNG True Random Number Generators by analyzing its chaotic dynamical behavior and FPGA implementation performances. The proposed hardware architecture is based on two stages of pipeline and parallel structure (only 2 clock cycles). Experimental implementation results demonstrate that the design can achieve a maximum operating frequency of 12.649 MHz and a throughput of 202 Mbit/s. Besides, the random bit sequences produced by TRNG have been successfully passed the NIST-800-22 statistical standards tests. The proposed multi-wing attractor presents also complex dynamics and it can be applied in many engineering applications, especially in embedded cryptographic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz, Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II Anal. Digit. Signal Process. 40(10), 626–633 (1993)

    Article  Google Scholar 

  2. U. Parlitz, L.O. Chua, L. Kocarev, K. Halle, A. Shang, Transmission of digital signals by chaotic synchronization. Int. J. Bifurc. Chaos 2(04), 973–977 (1992)

    Article  Google Scholar 

  3. M. Azzaz, C. Tanougast, S. Sadoudi, A. Dandache, F. Monteiro, Real-time image encryption based chaotic synchronized embedded cryptosystems. In: NEWCAS Conference (NEWCAS), 2010 8th IEEE International (IEEE, 2010), p. 61–64

  4. M.S. Azzaz, C. Tanougast, S. Sadoudi, A. Bouridane, A. Dandache, An FPGA implementation of a feed-back chaotic synchronization for secure communications. In: 7th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP ’10), July 2010. Northumbria University, Newcastle, UK

  5. M.S. Azzaz, C. Tanougast, S. Sadoudi, A. Bouridane, Synchronized hybrid chaotic generators: application to real-time wireless speech encryption. Commun. Nonlinear Sci. Numer. Simul. 18, 2035–2047 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Akgul, H. Calgan, I. Koyuncu, I. Pehlivan, A. Istanbullu, Chaos-based engineering applications with a 3d chaotic system without equilibrium points. Nonlinear Dyn. 84(2), 481–495 (2016)

    Article  MathSciNet  Google Scholar 

  7. Q. Lai, X.W. Zhao, K. Rajagopal, G. Xu, A. Akgul, E. Guleryuz, Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised sprott c system. Pramana 90(1), 6 (2018)

    Article  ADS  Google Scholar 

  8. K. Rajagopal, A. Akgul, S. Jafari, A. Karthikeyan, I. Koyuncu, Chaotic chameleon: dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses. Chaos Solitons Fractals 103, 476–487 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Alçın, İ. Pehlivan, İ. Koyuncu, Hardware design and implementation of a novel ANN-based chaotic generator in FPGA. Opt. Int. J. Light Electron Opt. 127(13), 5500–5505 (2016)

    Article  Google Scholar 

  10. M. Tuna, C.B. Fidan, Electronic circuit design, implementation and FPGA-based realization of a new 3d chaotic system with single equilibrium point. Opt. Int. J. Light Electron Opt. 127(24), 11786–11799 (2016)

    Article  Google Scholar 

  11. İ. Koyuncu, A.T. Özcerit, The design and realization of a new high speed FPGA-based chaotic true random number generator. Comput. Electr. Eng. 58, 203–214 (2017)

  12. K. Rajagopal, A. Karthikeyan, A. Srinivasan, Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91(3), 1491–1512 (2018)

  13. İ. Koyuncu, İ. Şahin, C. Gloster, N.K. Sarıtekin, A neuron library for rapid realization of artificial neural networks on FPGA: a case study of Rössler chaotic system. J. Circuits Syst. Comput. 26(01), 1750015 (2017)

    Article  Google Scholar 

  14. M. Anand, R.E. Desrochers, Quantification of restoration success using complex systems concepts and models. Restor. Ecol. 12(1), 117–123 (2004)

    Article  Google Scholar 

  15. M. Dutta, H.E. Nusse, E. Ott, J.A. Yorke, G. Yuan, Multiple attractor bifurcations: a source of unpredictability in piecewise smooth systems. Phys. Rev. Lett. 83(21), 4281 (1999)

    Article  ADS  Google Scholar 

  16. T. Carroll, L. Pecora, Using multiple attractor chaotic systems for communication. Chaos Interdiscip. J. Nonlinear Sci. 9(2), 445–451 (1999)

    Article  Google Scholar 

  17. G. Chen, J. Lü, Dynamics of the Lorenz System Family: Analysis, Control and Synchronization (Science Press, Beijing, 2003)

    Google Scholar 

  18. M.H. Lowenberg, Bifurcation analysis of multiple-attractor flight dynamics. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 356, 2297–2320 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 2002)

    MATH  Google Scholar 

  20. S. Cang, Y. Li, R. Zhang, Z. Wang, Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. Nonlinear Dyn. 95(1), 381–390 (2019)

    Article  Google Scholar 

  21. Z. Wang, Y. Sun, B.J. van Wyk, G. Qi, M.A. van Wyk, A 3-d four-wing attractor and its analysis. Braz. J. Phys. 39(3), 547–553 (2009)

    Article  ADS  Google Scholar 

  22. W. Sanum, B. Srisuchinwong, Highly complex chaotic system with piecewise linear nonlinearity and compound structures. J. Comput. 7(4), 1041–1047 (2012)

    Article  Google Scholar 

  23. S. Dadras, H.R. Momeni, A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Phys. Lett. A 373(40), 3637–3642 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Dong, R. Du, L. Tian, Q. Jia, A novel 3d autonomous system with different multilayer chaotic attractors. Phys. Lett. A 373(42), 3838–3845 (2009)

    Article  ADS  Google Scholar 

  25. S. ModelSim, User’s Manual, Ver. 6.2 c (Mentor Graphics Corp, Wilsonville, 2006)

    Google Scholar 

  26. Xilinx, Xilinx university program virtex-ii pro development system. Xilinx UG069 (v1.1) (2008)

  27. Xilinx, Integrated software environment (ise) vers 10.1. Xilinx (2008)

  28. NIST, A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST (2010)

  29. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications (Technical report, Booz-Allen and Hamilton Inc Mclean Va, 2001)

  30. L.G. de la Fraga, E. Torres-Pérez, E. Tlelo-Cuautle, C. Mancillas-Lopez, Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 90(3), 1661–1670 (2017)

    Article  Google Scholar 

  31. B. Ramalingam, A. Rengarajan, J.B.B. Rayappan, Hybrid image crypto system for secure image communication: a vlsi approach. Microprocess. Microsyst. 50, 1–13 (2017)

    Article  Google Scholar 

  32. K. Rajagopal, M. Tuna, A. Karthikeyan, İ. Koyuncu, P. Duraisamy, A. Akgul, Dynamical analysis, sliding mode synchronization of a fractional-order memristor hopfield neural network with parameter uncertainties and its non-fractional-order fpga implementation. Eur. Phys. J. Spec. Top. 228(10), 2065–2080 (2019)

    Article  Google Scholar 

  33. R. Kaibou, M.S. Azzaz, M. Benssalah, D. Teguig, H. Hamil, A. Merah, M.T. Akrour, Real-time FPGA implementation of a secure chaos-based digital crypto-watermarking system in the dwt domain using co-design approach. J. Real-Time Image Proc. 1–17 (2021). https://doi.org/10.1007/s11554-021-01073-3

  34. M.S. Azzaz, C. Tanougast, A. Maali, M. Benssalah, An efficient and lightweight multi-scroll chaos-based hardware solution for protecting fingerprint biometric templates. Int. J. Commun. Syst. 33(10), e4211 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Salah Azzaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzaz, M.S., Fellah, R., Tanougast, C. et al. Design and FPGA implementation of TRNG based on a new multi-wing attractor in Lorenz chaotic system. Eur. Phys. J. Spec. Top. 230, 3469–3480 (2021). https://doi.org/10.1140/epjs/s11734-021-00234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00234-6

Navigation