Skip to main content
Log in

A 4-D four-wing chaotic system with widely chaotic regions and multiple transient transitions

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In the paper, a novel four-wing chaotic system was constructed based on a Lorenz-like system. The novel chaotic system had rich dynamic characteristics such as four-wing attractors, widely chaotic regions, high SE complexity, and multiple transient transitions. Meanwhile, the weak chaotic attractors with single-wing and double-wing can be observed through changing the system parameters. NIST tests showed that the system had high complexity, which will have a good application value in secure communication and cryptography. In addition, a corresponding hardware analog circuit was designed based on the novel chaotic system with operational amplifiers and multipliers. The experimental results were agreed with the theoretical analysis, which verified that the novel chaotic system was practical feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22.

Similar content being viewed by others

References

  1. Butt, K. K., Li, G. H., Masood, F., & Khan, S. (2020). A digital image confidentiality scheme based on pseudo-quantum chaos and lucas sequence. Entropy, 22, 20.

    Article  MathSciNet  Google Scholar 

  2. Liang, H. T., Zhang, G. D., Hou, W. J., Huang, P. Y., Liu, B., & Li, S. L. (2021). A novel asymmetric hyperchaotic image encryption scheme based on elliptic curve cryptography. Applied Sciences-Basel, 11, 5691.

    Article  Google Scholar 

  3. Zeng, J., & Wang, C. H. (2021). A novel hyperchaotic image encryption system based on particle swarm optimization algorithm and cellular automata. Security and Communication Networks, 2021, 15.

    Article  Google Scholar 

  4. Xiong, L., Qi, L. W., Teng, S. F., Wang, Q. S., Wang, L., & Zhang, X. G. (2021). A simplest Lorenz-like chaotic circuit and its applications in secure communication and weak signal detection. European Physical Journal-Special Topics, 230, 1933.

    Article  Google Scholar 

  5. Yang, Q., Osman, W. M., & Chen, C. T. (2015). A new 6D hyperchaotic system with four positive lyapunov exponents coined. International Journal of Bifurcation and Chaos, 25, 1550060.

    Article  MathSciNet  Google Scholar 

  6. Cang, S., Li, Y., Zhang, R., & Wang, Z. (2019). Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. Nonlinear Dynamics, 95, 381.

    Article  Google Scholar 

  7. Zhang, S., Zeng, Y. C., & Li, Z. J. (2018). A novel four-dimensional no-equilibrium hyper-chaotic system with grid multiwing hyper-chaotic hidden attractors. Journal of Computational and Nonlinear Dynamics, 13, 090908.

    Article  Google Scholar 

  8. Li, W. J., Li, P., & Jia, M. M. (2021). Chaos control and chaos synchronization of a multi-wing chaotic system and its application in multi-frequency weak signal detection. Aip Advances, 11, 9.

    Google Scholar 

  9. He, S., Banerjee, S., & Sun, K. (2019). Complex dynamics and multiple coexisting attractors in a fractional-order microscopic chemical system. European Physical Journal-Special Topics, 228, 195.

    Article  Google Scholar 

  10. Khan, M. A., Atangana, A., Muhammad, T., & Alzahrani, E. (2021). Numerical solution of a fractal-fractional order chaotic circuit system. Revista Mexicana De Fisica, 67, 18.

    MathSciNet  Google Scholar 

  11. Wang, G. Y., Yuan, F., Chen, G. R., & Zhang, Y. (2018). Coexisting multiple attractors and riddled basins of a memristive system. Chaos, 28, 013125.

    Article  MathSciNet  Google Scholar 

  12. Chen, M. S., Wang, Z., Nazarimehr, F., & Jafari, S. (2021). A novel memristive chaotic system without any equilibrium point. Integration-the Vlsi Journal, 79, 133.

    Article  Google Scholar 

  13. Ma, J. P., Wang, L. D., Duan, S. K., & Xu, Y. M. (2017). A multi-wing butterfly chaotic system and its implementation. International Journal of Circuit Theory and Applications, 45, 1873.

    Article  Google Scholar 

  14. Chang, H., Li, Y. X., & Chen, G. R. (2020). A novel memristor-based dynamical system with multi-wing attractors and symmetric periodic bursting. Chaos, 30, 16.

    Article  MathSciNet  Google Scholar 

  15. Yang, Y., Huang, L. L., Xiang, J. H., Bao, H., & Li, H. Z. (2021). Design of multi-wing 3D chaotic systems with only stable equilibria or no equilibrium point using rotation symmetry. Aeu-International Journal of Electronics and Communications, 135, 10.

    Google Scholar 

  16. Liu, J., Cheng, X. F., & Zhou, P. (2021). Circuit implementation synchronization between two modified fractional-order Lorenz chaotic systems via a linear resistor and fractional-order capacitor in parallel coupling. Mathematical Problems in Engineering, 2021, 8.

    Google Scholar 

  17. Bashir, Z., Iqbal, N., & Hanif, M. (2021). A novel gray scale image encryption scheme based on pixels’ swapping operations. Multimedia Tools and Applications, 80, 1029.

    Article  Google Scholar 

  18. Liu, C., Tao, L., Ling, L., & Kai, L. (2004). A new chaotic attractor. Chaos Solitons & Fractals, 22, 1031.

    Article  MathSciNet  Google Scholar 

  19. Yang, Q. G., & Bai, M. L. (2017). A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dynamics, 88, 189.

    Article  Google Scholar 

  20. Yang, Q., Zhu, D., & Yang, L. (2018). A new 7D hyperchaotic system with five positive lyapunov exponents coined. International Journal of Bifurcation and Chaos, 28, 1850057.

    Article  MathSciNet  Google Scholar 

  21. Kaplan, J. L., & Yorke, J. A. (1979). Functional differential equations and approximation of fixed points. Lecture Notes in Mathematics, 170, 204.

    Article  Google Scholar 

  22. Li, C. Z., Rajagopal, K., Nazarimehr, F., & Liu, Y. J. (2021). A non-autonomous chaotic system with no equilibrium. Integration-the Vlsi Journal, 79, 143.

    Article  Google Scholar 

  23. Lai, Q., Xu, G. H., & Pei, H. Q. (2019). Analysis and control of multiple attractors in Sprott B system. Chaos Solitons & Fractals, 123, 192.

    Article  MathSciNet  Google Scholar 

  24. Ma, C. G., Mou, J., Xiong, L., Banerjee, S., Liu, T. M., & Han, X. T. (2021). Dynamical analysis of a new chaotic system: Asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dynamics, 103, 2867.

    Article  Google Scholar 

  25. Gu, S. Q., Du, B. X., & Wan, Y. J. (2020). A new four-dimensional non-hamiltonian conservative hyperchaotic system. International Journal of Bifurcation and Chaos, 30, 23.

    Article  MathSciNet  Google Scholar 

  26. Xi, X. J., Mobayen, S., Ren, H. P., & Jafari, S. (2018). Robust finite-time synchronization of a class of chaotic systems via adaptive global sliding mode control. Journal of Vibration and Control, 24, 3842.

    Article  MathSciNet  Google Scholar 

  27. Yu, F., Zhang, Z. A., Liu, L., Shen, H., Huang, Y. Y., Shi, C. Q., Cai, S., Song, Y., Du, S. C., & Xu, Q. (2020). Secure communication scheme based on a new 5D multistable four-wing memristive hyperchaotic system with disturbance inputs. Complexity, 2020, 16.

    Google Scholar 

  28. Wan, Q. Z., Zhou, Z. T., Ji, W. K., Wang, C. H., & Yu, F. (2020). Dynamic analysis and circuit realization of a novel no-equilibrium 5D memristive hyperchaotic system with hidden extreme multistability. Complexity, 2020, 16.

    Article  Google Scholar 

  29. Zhang, Z. F., Huang, L. L., Xiang, J. H., & Liu, S. (2021). Dynamic study of a new five-dimensional conservative hyperchaotic system with wide parameter range. Acta Physica Sinica, 70, 11.

    Google Scholar 

  30. Zhang, Z. F., & Huang, L. L. (2022). A new 5D Hamiltonian conservative hyperchaotic system with four center type equilibrium points, wide range and coexisting hyperchaotic orbits. Nonlinear Dynamics, 108, 637.

    Article  Google Scholar 

  31. Ivic, I., Kopjar, M., Buljeta, I., Pichler, D., Mesic, J., & Pichler, A. (2022). Influence of reverse osmosis process in different operating conditions on phenolic profile and antioxidant activity of conventional and ecological cabernet sauvignon red wine. Membranes, 12, 21.

    Google Scholar 

  32. Cui, L., Lu, M., Ou, Q.L., Duan, H., & Luo, W.H. (2020). Analysis and circuit implementation of fractional order multi-wing hidden attractors. Chaos Solitons & Fractals, 138(24), 109894.

    Article  MathSciNet  Google Scholar 

  33. Ma, C.G., Mou, J., Xiong, L., Banerjee, S., Liu, T.M., & Han, X.T. (2021). Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dynamics, 103(6), 1–14.

    Google Scholar 

  34. Zhang, S., Zeng, Y.C., Li, Z.J., & Zhou, C.Y. (2018). Hidden extreme multistability, antimonotonicity and offset boosting control in a novel fractional-order hyperchaotic system without equilibrium. International Journal of Bifurcation and Chaos, 28(13).

  35. Liu, L.C., Du, C.H., Zhang, X.F. , Li, J., & Shi, S.S. (2019). Dynamics and entropy analysis for a new 4-D hyperchaotic system with coexisting hidden attractors. Entropy, 21(3), 287.

    Article  MathSciNet  Google Scholar 

  36. Yan, S. H., Wang, E., Wang, Q. Y., Sun, X., & Ren, Y. (2021). Analysis, circuit implementation and synchronization control of a hyperchaotic system. Physica Scripta, 96, 18.

    Article  Google Scholar 

  37. Li, L. Y., Kong, D. G., Chai, Z. J., & Wang, Y. X. (2022). A simple butterfly-shaped chaotic system. European Physical Journal B, 95, 7.

    Article  Google Scholar 

  38. Zhang, S., Zeng, Y. C., Li, Z. J., Wang, M. J., & Xiong, L. (2018). Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability. Chaos, 28, 11.

    Article  MathSciNet  Google Scholar 

  39. Zhang, X. F., Tian, Z., Li, J., & Cui, Z. W. (2021). A simple parallel chaotic circuit based on memristor. Entropy, 23, 14.

    MathSciNet  Google Scholar 

  40. Gu, S. Q., Peng, Q. Q., Leng, X. X., & Du, B. X. (2021). A novel non-equilibrium memristor-based system with multi-wing attractors and multiple transient transitions. Chaos, 31, 033105.

    Article  MathSciNet  Google Scholar 

  41. Aricioglu, B. (2022). RNG and circuit implementation of a fractional order chaotic attractor based on two degrees of freedom nonlinear system. Analog Integr. Circuits Process., 112, 49.

    Article  Google Scholar 

Download references

Funding

There was no funding source for this study.

Author information

Authors and Affiliations

Authors

Contributions

It is declared that all the authors contributed equally for this paper. All the authors wrote and reviewed the manuscript.

Corresponding authors

Correspondence to Zhijun Chai or Yunxia Wang.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chai, Z. & Wang, Y. A 4-D four-wing chaotic system with widely chaotic regions and multiple transient transitions. Analog Integr Circ Sig Process 119, 195–213 (2024). https://doi.org/10.1007/s10470-024-02260-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-024-02260-5

Keywords

Navigation