Skip to main content
Log in

Review on Goldstone dark matter

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We review the theory and phenomenology of models in which the dark matter is made of composite pseudo-Nambu Goldstone bosons. We focus predominantly on models in which the Higgs is also composite and dark matter is a singlet and heavier than the Standard Model fields. Then we discuss a variety of departures from this main setup, including: electroweak charged dark matter, lighter dark matter, issues related to quantum anomalies, ultraviolet completions or composite dark matter not related to the hierarchy problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. As we have seen in previous sections, CHMs can shed light on the gauge hierarchy problem as well as on the flavour problem. We also highlight again in this section that they can be much more predictive than other models.

  2. The following toy example should illustrate this conflict. Consider the function \(f(x,y) = A (x-y)^2\). This function is trivially invariant under the shift \(x\rightarrow x+\alpha \), \(y\rightarrow y+\alpha \). However, this symmetry is broken if \(x\rightarrow -x\) is enforced, unless \(A=0\). A similar conflict in the composite DM model could require \(L_\sigma = 0\) and therefore no DM propagating field.

  3. While \(\mathrm{SO}(6)/\mathrm{SO}(5)\) fulfils this condition, \(\mathrm{SO}(5)\times U(1)/\mathrm{SO}(4)\) must be parametrised by two scales f and \(f_S\), unless \(f_S\gg f\) as we often assume for simplicity. Similar considerations apply to \(\mathrm{SO}(6)/\mathrm{SO}(4)\) and \(\mathrm{SO}(7)/\mathrm{SO}(5)\).

  4. Despite being presumably negligible for pNGBs, it is worth to mention that interpreting experimental data in the context of composite DM might be more subtle than in the elementary case for several reasons. The limits reported by experimental collaborations usually assume that the DM-nucleon cross section is independent of the recoil energy; i.e. it depends only on the nucleon form factor. This is however not true for composite DM [28, 29]. In turn, theoretical estimations of the DM form factors are challenging and rely typically on the lattice [30]. Likewise, the DM velocity distribution and profile in models of composite DM could be appreciably different from that assumed by the experimental collaborations [31].

  5. In Ref. [12] it was shown that the DM phenomenology of this model can be still captured by the parametrisation in Eq. (8) with \(a_1,a_2,a_3=31/(75\sqrt{2} )\sim 0.3\) and \(\gamma \) and \(\delta \) being, as usual, dependent on the fermionic couplings.

  6. In the simpler coset \([\mathrm{SU}(2)\times U(1)^2]/[\mathrm{SU}(2)\times U(1)]\), the unbroken U(1) commutes with the whole SM gauge group and therefore the only pNGB is exactly massless. Likewise, in \(\mathrm{SU}(2)^2/[\mathrm{SU}(2)\times U(1)]\) there are only two electrically charged pNGBs.

References

  1. B.W. Lee, S. Weinberg, Cosmological lower bound on heavy neutrino masses. Phys. Rev. Lett. 39, 165–168 (1977). https://doi.org/10.1103/PhysRevLett.39.165

    Article  ADS  Google Scholar 

  2. M. Frigerio, A. Pomarol, F. Riva, A. Urbano, Composite scalar dark matter. JHEP 07, 015 (2012). https://doi.org/10.1007/JHEP07(2012)015. arXiv:1204.2808

    Article  ADS  Google Scholar 

  3. K. Agashe, R. Contino, A. Pomarol, The minimal composite Higgs model. Nucl. Phys. B 719, 165–187 (2005). https://doi.org/10.1016/j.nuclphysb.2005.04.035. arXiv:hep-ph/0412089

    Article  ADS  Google Scholar 

  4. B. Gripaios, M. Nardecchia, T. You, On the structure of anomalous composite Higgs models. Eur. Phys. J. C 77, 28 (2017). https://doi.org/10.1140/epjc/s10052-017-4603-5. arXiv:1605.09647

    Article  ADS  Google Scholar 

  5. M. Chala, G. Nardini, I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures. Phys. Rev. D 94, 055006 (2016). https://doi.org/10.1103/PhysRevD.94.055006. arXiv:1605.08663

    Article  ADS  Google Scholar 

  6. R. Balkin, M. Ruhdorfer, E. Salvioni, A. Weiler, Charged composite scalar dark matter. JHEP 11, 094 (2017). https://doi.org/10.1007/JHEP11(2017)094. arXiv:1707.07685

    Article  MATH  ADS  Google Scholar 

  7. L. Da Rold, A.N. Rossia, The minimal simple composite Higgs model. JHEP 12, 023 (2019). https://doi.org/10.1007/JHEP12(2019)023. arXiv:1904.02560

    Article  MathSciNet  Google Scholar 

  8. M. Ramos, Composite dark matter phenomenology in the presence of lighter degrees of freedom. JHEP 07, 128 (2020). https://doi.org/10.1007/JHEP07(2020)128. arXiv:1912.11061

    Article  ADS  Google Scholar 

  9. M. Chala, \(h \rightarrow \gamma \gamma \) excess and dark matter from composite Higgs models. JHEP 01, 122 (2013). https://doi.org/10.1007/JHEP01(2013)122. arXiv:1210.6208

    Article  ADS  Google Scholar 

  10. G. Ballesteros, A. Carmona, M. Chala, Exceptional composite dark matter. Eur. Phys. J. C 77, 468 (2017). https://doi.org/10.1140/epjc/s10052-017-5040-1. arXiv:1704.07388

    Article  ADS  Google Scholar 

  11. V. Sanz, J. Setford, Composite Higgses with seesaw EWSB. JHEP 12, 154 (2015). https://doi.org/10.1007/JHEP12(2015)154. arXiv:1508.06133

    Article  ADS  Google Scholar 

  12. M. Chala, R. Gröber, M. Spannowsky, Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter. JHEP 03, 040 (2018). https://doi.org/10.1007/JHEP03(2018)040. arXiv:1801.06537

  13. S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239–2247 (1969). https://doi.org/10.1103/PhysRev.177.2239

    Article  ADS  Google Scholar 

  14. C.G. Callan Jr., S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2247–2250 (1969). https://doi.org/10.1103/PhysRev.177.2247

    Article  ADS  Google Scholar 

  15. H.K. Dreiner, An Introduction to explicit R-parity violation. 21, 565–583 (2010). https://doi.org/10.1142/9789814307505_0017arXiv:hep-ph/9707435

  16. G. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, The strongly-interacting light Higgs. JHEP 06, 045 (2007). https://doi.org/10.1088/1126-6708/2007/06/045. arXiv:hep-ph/0703164

    Article  ADS  Google Scholar 

  17. J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra, A. Wulzer, The other natural two higgs doublet model. Nucl. Phys. B 853, 1–48 (2011). https://doi.org/10.1016/j.nuclphysb.2011.07.008. arXiv:1105.5403

    Article  MATH  ADS  Google Scholar 

  18. B. Bellazzini, C. Csáki, J. Serra, Composite Higgses. Eur. Phys. J. C 74, 2766 (2014). https://doi.org/10.1140/epjc/s10052-014-2766-x. arXiv:1401.2457

    Article  ADS  Google Scholar 

  19. J. Alarcon, J. Martin Camalich, J. Oller, The chiral representation of the \(\pi N\) scattering amplitude and the pion-nucleon sigma term. Phys. Rev. D 85, 051503 (2012). https://doi.org/10.1103/PhysRevD.85.051503. arXiv:1110.3797

  20. J. Alarcon, L. Geng, J. Martin Camalich, J. Oller, The strangeness content of the nucleon from effective field theory and phenomenology. Phys. Lett. B 730, 342–346 (2014). https://doi.org/10.1016/j.physletb.2014.01.065. arXiv:1209.2870

    Article  ADS  Google Scholar 

  21. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571, A16 (2014), https://doi.org/10.1051/0004-6361/201321591, arXiv:1303.5076

  22. C. Gross, O. Lebedev, T. Toma, Cancellation mechanism for dark-matter-nucleon interaction. Phys. Rev. Lett. 119, 191801 191801 (2017). https://doi.org/10.1103/PhysRevLett.119.191801. arXiv:1708.02253

    Article  ADS  Google Scholar 

  23. R. Balkin, M. Ruhdorfer, E. Salvioni, A. Weiler, Dark matter shifts away from direct detection. JCAP 11, 050 (2018). https://doi.org/10.1088/1475-7516/2018/11/050. arXiv:1809.09106

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. S. Bruggisser, F. Riva, A. Urbano, Strongly interacting light dark matter. SciPost. Phys. 3, 017 (2017). https://doi.org/10.21468/SciPostPhys.3.3.017. arXiv:1607.02474

    Article  ADS  Google Scholar 

  25. XENON collaboration, E. Aprile et al., First dark matter search results from the XENON1T experiment. Phys. Rev. Lett. 119, 181301, (2017), https://doi.org/10.1103/PhysRevLett.119.181301, [1705.06655]

  26. LUX-ZEPLIN collaboration, D. Akerib et al., Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment. Phys. Rev. D 101, 052002, (2020), https://doi.org/10.1103/PhysRevD.101.052002, arXiv:1802.06039

  27. LUX collaboration, D. Akerib et al., Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118, 021303, (2017), https://doi.org/10.1103/PhysRevLett.118.021303, arXiv:1608.07648

  28. E. Del Nobile, G.B. Gelmini, P. Gondolo, J.-H. Huh, Direct detection of light anapole and magnetic dipole DM. JCAP 06, 002 (2014). https://doi.org/10.1088/1475-7516/2014/06/002. arXiv:1401.4508

    Article  Google Scholar 

  29. E. Del Nobile, Direct detection signals of dark matter with magnetic dipole moment. PoS EPS–HEP2017, 626 (2017). https://doi.org/10.22323/1.314.0626. arXiv: 1709.08700

  30. Lattice Strong Dynamics (LSD) collaboration, T. Appelquist et al., Lattice calculation of composite dark matter form factors. Phys. Rev. D 88, 014502, (2013). https://doi.org/10.1103/PhysRevD.88.014502, arXiv:1301.1693

  31. N. Bozorgnia, G. Bertone, Implications of hydrodynamical simulations for the interpretation of direct dark matter searches. Int. J. Mod. Phys. A 32, 1730016 (2017). https://doi.org/10.1142/S0217751X17300162. arXiv:1705.05853

    Article  ADS  Google Scholar 

  32. M. Chala, R. Gröber, M. Spannowsky, Interplay between collider searches for vector-like quarks and dark matter searches in composite Higgs models. Int. J. Mod. Phys. A 34, 1940011 (2019). https://doi.org/10.1142/S0217751X19400116

    Article  ADS  Google Scholar 

  33. ATLAS, CMS collaboration, G. Aad et al., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV. JHEP 08, 045, (2016). https://doi.org/10.1007/JHEP08(2016)045, arXiv:1606.02266

  34. ATLAS collaboration, M. Aaboud et al., Combination of searches for invisible Higgs boson decays with the ATLAS experiment. Phys. Rev. Lett. 122, 231801, (2019). https://doi.org/10.1103/PhysRevLett.122.231801, arXiv:1904.05105

  35. D. Marzocca, A. Urbano, Composite dark matter and LHC interplay. JHEP 07, 107 (2014). https://doi.org/10.1007/JHEP07(2014)107. arXiv:1404.7419

    Article  ADS  Google Scholar 

  36. N. Fonseca, R. Zukanovich Funchal, A. Lessa, L. Lopez-Honorez, Dark matter constraints on composite Higgs models. JHEP 06, 154 (2015). https://doi.org/10.1007/JHEP06(2015)154. arXiv:1501.05957

    Article  ADS  Google Scholar 

  37. M. Ruhdorfer, E. Salvioni, A. Weiler, A global view of the off-shell Higgs portal. SciPost. Phys. 8, 027 (2020). https://doi.org/10.21468/SciPostPhys.8.2.027. arXiv:1910.04170

    Article  Google Scholar 

  38. N. Craig, H.K. Lou, M. McCullough, A. Thalapillil, The Higgs portal above threshold. JHEP 02, 127 (2016). https://doi.org/10.1007/JHEP02(2016)127. arXiv:1412.0258

    Article  ADS  Google Scholar 

  39. S. Banerjee, M. Chala, M. Spannowsky, Top quark FCNCs in extended Higgs sectors. Eur. Phys. J. C 78, 683 (2018). https://doi.org/10.1140/epjc/s10052-018-6150-0. arXiv:1806.02836

    Article  ADS  Google Scholar 

  40. N. Castro, M. Chala, A. Peixoto, M. Ramos, Novel flavour-changing neutral currents in the top quark sector. arXiv:2005.09594

  41. A. Davoli, A. De Simone, D. Marzocca, A. Morandini, Composite 2HDM with singlets: a viable dark matter scenario. JHEP 10, 196 (2019). https://doi.org/10.1007/JHEP10(2019)196. arXiv:1905.13244

    Article  MathSciNet  ADS  Google Scholar 

  42. M. Cirelli, A. Strumia, M. Tamburini, Cosmology and astrophysics of minimal dark matter. Nucl. Phys. B 787, 152–175 (2007). https://doi.org/10.1016/j.nuclphysb.2007.07.023. arXiv:0706.4071

    Article  ADS  Google Scholar 

  43. V. Drach, A. Hietanen, C. Pica, J. Rantaharju, F. Sannino, Template composite dark matter: \(SU(2)\) gauge theory with 2 fundamental flavours. PoS LATTICE2015, 234 (2016). https://doi.org/10.22323/1.251.0234. arXiv:1511.04370

  44. R. Arthur, V. Drach, M. Hansen, A. Hietanen, R. Lewis, C. Pica et al., Composite (Goldstone) Higgs dynamics on the lattice: spectrum of SU(2) gauge theory with two fundamental fermions. PoS LATTICE2014, 249 (2014). https://doi.org/10.22323/1.214.0249. arXiv: 1412.7302

    Article  Google Scholar 

  45. C. Pica, V. Drach, M. Hansen, F. Sannino, Composite Higgs dynamics on the lattice. EPJ Web Conf. 137, 10005 (2017). https://doi.org/10.1051/epjconf/201713710005. arXiv:1612.09336

    Article  Google Scholar 

  46. O. Witzel, Review on composite Higgs models. PoS LATTICE2018, 006 (2019). https://doi.org/10.22323/1.334.0006. arXiv: 1901.08216

    Article  Google Scholar 

  47. G. Cacciapaglia, F. Sannino, Fundamental composite (Goldstone) Higgs dynamics. JHEP 04, 111 (2014). https://doi.org/10.1007/JHEP04(2014)111. arXiv:1402.0233

    Article  MATH  ADS  Google Scholar 

  48. L. Vecchi, The natural composite Higgs. arXiv:1304.4579

  49. G. Cacciapaglia, Composite dark Matter and the Higgs. Frascati Phys. Ser. 65, 112–119 (2017)

    Google Scholar 

  50. T. Ma, G. Cacciapaglia, Fundamental composite 2HDM: SU(N) with 4 flavours. JHEP 03, 211 (2016). https://doi.org/10.1007/JHEP03(2016)211. arXiv:1508.07014

    Article  ADS  Google Scholar 

  51. Y. Wu, T. Ma, B. Zhang, G. Cacciapaglia, Composite dark matter and Higgs. JHEP 11, 058 (2017). https://doi.org/10.1007/JHEP11(2017)058. arXiv:1703.06903

    Article  ADS  Google Scholar 

  52. C. Cai, G. Cacciapaglia, H.-H. Zhang, Vacuum alignment in a composite 2HDM. JHEP 01, 130 (2019). https://doi.org/10.1007/JHEP01(2019)130. arXiv:1805.07619

    Article  MathSciNet  ADS  Google Scholar 

  53. G. Cacciapaglia, H. Cai, A. Deandrea, A. Kushwaha, Composite Higgs and dark matter model in SU(6)/SO(6). JHEP 10, 035 (2019). https://doi.org/10.1007/JHEP10(2019)035. arXiv:1904.09301

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. A. Agugliaro, G. Cacciapaglia, A. Deandrea, S. De Curtis, Vacuum misalignment and pattern of scalar masses in the SU(5)/SO(5) composite Higgs model. JHEP 02, 089 (2019). https://doi.org/10.1007/JHEP02(2019)089. arXiv:1808.10175

    Article  MathSciNet  ADS  Google Scholar 

  55. H. Cai, G. Cacciapaglia, A singlet dark matter in the SU(6)/SO(6) composite Higgs model. arXiv:2007.04338

  56. R. Barbieri, L.J. Hall, V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics. Phys. Rev. D 74, 015007 (2006). https://doi.org/10.1103/PhysRevD.74.015007. arXiv:hep-ph/0603188

    Article  ADS  Google Scholar 

  57. N. Arkani-Hamed, A. Cohen, E. Katz, A. Nelson, The littlest Higgs. JHEP 07, 034 (2002). https://doi.org/10.1088/1126-6708/2002/07/034. arXiv:hep-ph/0206021

    Article  MathSciNet  ADS  Google Scholar 

  58. C. Csaki, J. Heinonen, M. Perelstein, C. Spethmann, A weakly coupled ultraviolet completion of the littlest Higgs with T-parity. Phys. Rev. D (2009). https://doi.org/10.1103/PhysRevD.79.035014. arXiv:0804.0622

    Article  Google Scholar 

  59. D. Pappadopulo, A. Vichi, T-parity, its problems and their solution. JHEP 03, 072 (2011). https://doi.org/10.1007/JHEP03(2011)072. arXiv:1007.4807

    Article  MATH  ADS  Google Scholar 

  60. R. Balkin, G. Perez, A. Weiler, Little composite dark matter. Eur. Phys. J. C 78, 104 (2018). https://doi.org/10.1140/epjc/s10052-018-5552-3. arXiv:1707.09980

    Article  ADS  Google Scholar 

  61. A. Carmona, M. Chala, Composite dark sectors. JHEP 06, 105 (2015). https://doi.org/10.1007/JHEP06(2015)105. arXiv:1504.00332

    Article  MathSciNet  MATH  ADS  Google Scholar 

  62. E. Witten, Some inequalities among hadron masses. Phys. Rev. Lett. 51, 2351 (1983). https://doi.org/10.1103/PhysRevLett.51.2351

  63. T. Hambye, F.-S. Ling, L. Lopez Honorez, J. Rocher, Scalar multiplet dark matter. JHEP 07, 090 (2009). https://doi.org/10.1007/JHEP05(2010)066. arXiv:0903.4010

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MC would like to thank Maria Ramos for her comments and help. MC is supported by the Spanish MINECO under the Ramon y Cajal programme as well as by the Ministry of Science and Innovation under grant number FPA2016-78220-C3-3-P, and by the Junta de Andalucía grants FQM 101 and A-FQM-211-UGR18 (fondos FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Chala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chala, M. Review on Goldstone dark matter. Eur. Phys. J. Spec. Top. 231, 1315–1323 (2022). https://doi.org/10.1140/epjs/s11734-021-00218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00218-6

Navigation