Skip to main content
Log in

Expert habitat: a colonization conjecture for exoplanetary habitability via penalized multi-objective optimization-based candidate validation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The rate at which interstellar habitable planets are being discovered would naturally warrant consideration and exploration of a number of related issues. While the physical conditions that can support persistent contact demand structural similarity of an extra-solar planet (exoplanet) to Earth, and the necessary bio-chemical conditions needed to sustain life, potential for interstellar trade and extraction remain valid nonetheless. Based on the aspects that are commonly referred to as Earth similarity and habitability, we propose a novel bi-objective optimization framework as a tool to measure Earth similarity score (CDHS). This is followed by conjectures on possible interactions between Earth similarity and habitability, via two variants of penalized multi-objective particle swarm optimization, namely speed constrained multi-objective PSO (SMPSO) and a novel variant of multi-objective quantum PSO (MOQPSO). The optimization framework dispenses of classical gradient descent/ascent approach (GD/GA) by replacing it with SMPSO and MOQPSO. The approach to the input–output relations commonly adopted in production economics can be a natural influence for modeling habitability in exoplanets. An insightful demonstration establishes this claim. The scores reveal potentially habitable planets for interstellar trade. An analytical model of colonization in an exoplanet is also presented where we derive conditions for interstellar resource extraction and the volume of trade as function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Sloan Digital Sky Survey.

  2. March. 2021, NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PS.

  3. http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database.

  4. The PHL’s Exoplanets Catalog (PHL-EC) contains observed and modeled parameters for all currently confirmed exoplanets.

  5. The PSO clustering suite has implemented several clustering algorithms, K Means being one of those. main.py needs to be run where KMeans was not used but has as default in the suite. Assigning hybrid == false will disable automatic choice of KMeans.

References

  1. M. LoPresto, H. Ochoa, Phys. Educ. 52, 065016 (2017)

    Article  ADS  Google Scholar 

  2. H.P. Shuch, Springer Science & Business Media (2011)

  3. K. Bora, S. Snehanshu, S. Agrawal, M. Safonova, S. Routh, A. Narasimhamurthy, Astron. Comput. 17, 129–143 (2016)

    Article  ADS  Google Scholar 

  4. S. Saha, S. Basak, M. Safonova, K. Bora, S. Agrawal, P. Sarkar, J. Murthy, Astron. Comput. 23, 141–150 (2018)

    Article  ADS  Google Scholar 

  5. L.N. Irwin, A. Méndez, A.G. Fairén, D. Schulze-Makuch, Challenges 5(1), 159–174 (2014). https://doi.org/10.3390/challe5010159

    Article  ADS  Google Scholar 

  6. L. Kaltenegger, S. Udry, F. Pepe, (2011). arXiv:1108.3561

  7. A. Méndez, A Thermal Planetary Habitability Classification for Exoplanets, Planetary Habitability Laboratory @ UPR Arecibo (2011). http://phl.upr.edu/library/notes/athermalplanetaryhabitabilityclassificationforexoplanets

  8. D. Schulze-Makuch, A. Méndez, A.G. Fairén et al., Astrobiology 11, 1041–1052 (2011)

    Article  ADS  Google Scholar 

  9. M. Safonova, J.V. Murthy, Y.A. Shchekinov, Int. J. Astrobiol. 15, 93–105 (2016)

    Article  ADS  Google Scholar 

  10. S.-S. Huang, Publ. Astron. Soc. Pac. 71, 421 (1959)

    Article  ADS  Google Scholar 

  11. J.F. Kasting, Science 259, 920–926 (1993). https://doi.org/10.1126/science.11536547

    Article  ADS  Google Scholar 

  12. D.J. Stevenson, Nature 400, 32 (1999)

    Article  ADS  Google Scholar 

  13. L.N. Irwin, D. Schulze-Makuch, (Springer-Praxis, New York, 2011)

  14. R. Heller, J. Armstrong, Astrobiology 14, 50–66 (2014)

    Article  ADS  Google Scholar 

  15. R.A. Wittenmyer, M. Tuomi, R.P. Butler et al., Astrophys. J. 791, 114 (2014)

    Article  ADS  Google Scholar 

  16. M. Hossain, A. Majumder, T. Basak, Open J. Stat. 2, 460 (2012). https://doi.org/10.4236/ojs.2012.24058

    Article  Google Scholar 

  17. S. Basak, S. Saha, A. Mathur, K . Bora, S. Makhija, M. Safonova, S. Agrawal, Astron. Comput. 30 (2020)

  18. A. Theophilus, S. Saha, S. Basak, J. Murthy, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2139–2147 (2018)

  19. S. Saha, J. Sarkar, A. Dwivedi, N. Dwivedi, A.M. Narasimhamurthy, R. Roy, J. Cloud Comput. 5, 1–23 (2015)

    Article  Google Scholar 

  20. A. Likas, N.A. Vlassis, J.J. Verbeek, Pattern Recognit. 36, 451–461 (2003)

    Article  ADS  Google Scholar 

  21. Y. Zhang, Z. Jin, Expert Syst. Appl. 148, 113246 (2020). https://doi.org/10.1016/j.eswa.2020.113246

  22. X. Lai, J. Hao, Z. Fu, D. Yue, Expert Syst. Appl. 149 (2020)

  23. I. Dahmani, M. Hifi, T. Saadi, L. Yousef, Expert Syst. Appl. 148, 113224 (2020). https://doi.org/10.1016/j.eswa.2020.113224

    Article  Google Scholar 

  24. K.M. Ang, W.H. Lim, N.A. Isa, S.S. Tiang, C.H. Wong, Expert Syst. Appl. 140 (2020)

  25. M. Roshanzamir, M.A. Balafar, S.N. Razavi, Expert Syst. Appl. 149, 113292 (2020)

    Article  Google Scholar 

  26. A. Nebro, J. Durillo, J. Garcia-Nieto, C. Coello, F. Luna, E. Alba, in Computational Intelligence in Multi-criteria Decision-Making, pp. 66–73 (2009)

  27. R. Eberhart, Y. Shi, in International Conference on Evolutionary Programming, pp. 611–616 (1998)

  28. A. Méndez, PHL’s Expoplanets Catalog (2018). http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database

  29. E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, D. Fonseca, G. Viviane, IEEE Trans. Evol. Comput. 7, 117–132 (2003)

    Article  Google Scholar 

  30. J. Temple, Int. Rev. Appl. Econ. 20(3), 301–317 (2006). https://doi.org/10.1080/02692170600736052

    Article  Google Scholar 

  31. J. Felipe, F. Fisher, Wiley-Blackwell Metroeconomica 54(2–3), 208–262 (2003)

  32. J. Felipe, J. McCombie, Int. Rev. Appl. Econ. 24, 665–684 (2010)

    Article  Google Scholar 

  33. E.N. Barron, Game Theory: An Introduction, 2nd edn. (Wiley, New York, 2013)

    Book  Google Scholar 

  34. K. Arrow, G. Debreu, Econometrica 265–290 (1954)

  35. J. Sun, B. Feng, W. Xu, in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), vol. 1, pp. 325–331 (2004)

  36. J. Sun, W. Xu, B. Feng, in 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 111–116 (2004)

  37. M. Clerc, J. Kennedy, IEEE Trans. Evol. Comput. 6, 58–73 (2002). https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

  38. E. Zitzler, L. Thiele, in International Conference on Parallel Problem Solving from Nature, pp. 292–301 (1998)

  39. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  40. F. Kursawe, in Proceedings of the International Conference on Parallel Problem Solving from Nature (Springer, 1990), pp. 193–197

  41. C. Fonseca, P. Fleming, Evol. Comput. 3, 1–16 (1995)

  42. E. Zitzler, K. Deb, L. Thiele, Evol. Comput. 8, 173–195 (2000)

    Article  Google Scholar 

  43. A.J. Nebro, E. Alba, F. Luna, Soft. Comput. 11, 531–540 (2007). https://doi.org/10.1007/s00500-006-0096-0

  44. S. Bandyopadhyay, S.K. Pal, B. Aruna, IEEE Trans. Syst. Man Cybern. Part B 34, 2088–2099 (2004). https://doi.org/10.1109/TSMCB.2004.834438

    Article  Google Scholar 

  45. P. Krugman, Econ. Inq. 48, 1119–1123. (2010). https://doi.org/10.1111/j.1465-7295.2009.00225.x

  46. T. Jason, J.T. Wright, http://exoplanets.org/table

  47. A. Lincowski, V. Meadows, D. Crisp, T. Robinson, R. Luger, J. Lustig-Y, G. Arney, Astrophys. J. 867, 76 (2018). https://doi.org/10.3847/1538-4357/aae36a

    Article  ADS  Google Scholar 

  48. A. Theophilus, S. Saha, S. Basak, J. Murthy, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2139–2147 (2018)

  49. T. Ray, K.M. Liew, A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimisation problems, in Proc. 2001 Congress on Evolutionary Computation, vol. 1, pp. 75–80 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Mathur.

Appendices

Appendix

Convergence for hypervolume terminated QPSO (HT-MOQPSO)

We assume the quantum delta potential model of PSO where,

$$\begin{aligned} |\psi |^2 \mathrm{d}x\mathrm{d}y\mathrm{d}x = Q\mathrm{d}x\mathrm{d}y\mathrm{d}z. \end{aligned}$$
(25)

\(|\psi |^2\) is the probability density function satisfying

$$\begin{aligned} \int _{-\infty }^{+\infty } |\psi |^2 \mathrm{d}x\mathrm{d}y\mathrm{d}x = \int _{-\infty }^{+\infty } Q \mathrm{d}x\mathrm{d}y\mathrm{d}x =1. \end{aligned}$$
(26)

The state function, \(\psi (x,t)\) is described by Schrödinger equation. Consider H as the Hamiltonian operator, for a single particle of mass m in a potential field V(x), given as

$$\begin{aligned} H = -\frac{h^2}{2m}\varDelta ^2 + V(x), \end{aligned}$$
(27)

where h is the Planck’s constant. Let us consider the time dependent and time independent Schrodinger equation to arrive at the variant describing the delta potential well of QPSO: \( H\psi = ih\frac{\partial \psi }{\partial t} ; \text { time dependent variant} \) and \( H\psi = E\psi ; \) time independent variant where E \(=\) Energy eigen value and V(x) \(=\) \(-\gamma \partial (x - p) = -\gamma \partial (y)\); y \(=\) \(x -p\). p is the center of the attraction potential field. This is essential for stability and bound state of the potential. Using the above variants, we can write

$$\begin{aligned}&\left[ -\frac{h^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}y^2} - \gamma \partial (y)\right] \psi = E\psi \\&\quad \implies \frac{\mathrm{d}^2\psi }{\mathrm{d}y^2} + \frac{2m}{h^2}\gamma \partial (y)\psi = -\frac{2m}{h^2}E\psi \\&\quad \implies \frac{\mathrm{d}^2\psi }{\mathrm{d}y^2} + \frac{2m}{h^2}[\gamma \partial (y) + E]\psi = 0\\&\quad \implies \frac{\mathrm{d}^2\psi }{\mathrm{d}y^2} - \beta ^2\psi = 0 ; \text {where } \beta = \sqrt{\frac{-2mE}{h}}. \end{aligned}$$

Let L \(=\) \(\frac{1}{\beta }\). The wave function (normalized) and the probability density function can be represented as \(\psi (y) = \frac{1}{\sqrt{L}}e^{-|y|/L}\) and \(Q(y) = \frac{1}{L} e^{-2|y|/L}\), respectively. The termination condition on the MOQPSO algorithm based on hypervolume is based on the assumption that successive iterative computation of the area including solution set (Pareto front) would converge, i.e., the differences between the successive areas bounded by \(\epsilon \) implying the swarm movement being restricted in an \(\epsilon \) - neighborhood to guarantee convergence. Since, the probability density function is computed already. We arrive at the expression stating the difference in hypervolume. \(||A_{i+1} - A_{i}|| = \int _{-\epsilon }^{+\epsilon } ||Q(A_{i+1}) - Q(A_{i})|| \mathrm{d}y \rightarrow \epsilon \). As \(\epsilon \rightarrow 0\) when \(i \rightarrow \infty \), HT-MOQPSO is guaranteed to converge asymptotically.

Modeling constraints using penalties

We represent all strict inequality and equality constraints as non-strict equality constraint as described by Ray and Liew [49]. We convert strict inequality constraint of the type \(g'(x)\,<\,0\) to a non-strict inequality constraint g(x) by introducing an error term \(\epsilon \) such that \(g(x) = g'(x) + \epsilon \,\le 0\). By introducing a tolerance value \(\tau \), we convert equality constraint of the form \(h(x) = 0\) to \(g(x) = |h(x)| - \tau \le 0\). For a solution \(p_i\), let \(c_i\) denote the vector of constraint values. Then \(c_{ik} = max(g_k(p_i),0)\,\forall \,k=1,2,3,\ldots ,m\). When \(c_{ik} = 0\), then solution \(p_i\) lies in the feasible region of the search space.

Applying this rule, constraints under CRS can be translated to

$$\begin{aligned}&-\phi + \epsilon \le 0,\,\, \phi -1 + \epsilon \le 0\,\, \forall \,\phi \in \{\alpha ,\beta ,\delta ,\gamma \}, \end{aligned}$$
(28)
$$\begin{aligned}&|\alpha + \beta -1| - \tau \le 0, \,\, |\delta + \gamma -1| - \tau \le 0. \end{aligned}$$
(29)

Under DRS, we replace (29) with \(\alpha + \beta + \epsilon -1 \le 0,\,\,\delta + \gamma + \epsilon -1 \le 0 \). We impose these constraints through the use of penalty methods. In penalty methods, we augment the objective functions with penalty functions that “penalizes” a candidate solution when it violates any of the constraints. In case of a minimization problem, penalty functions return a large positive value, when a candidate solution moves outside of the feasible region, that gets added to the base objective function. This, in turn, makes the objective function large and undesirable and hence, making the candidate solution weak.

We define the following penalty functions:

$$\begin{aligned}&\psi (x) = {\left\{ \begin{array}{ll} 0,&{}\quad \text {if } |x| - \tau \le 0,\\ k_1.|x|,&{}\quad otherwise \end{array}\right. },\\&\varOmega (x) = {\left\{ \begin{array}{ll} 0,&{}\quad \text {if } x + \epsilon \le 0,\\ k_2.|x|,&{}\quad otherwise. \end{array}\right. } \end{aligned}$$

\(k_1\) and \(k_2\) are penalty factors. Larger the penalty factors, the more severe the penalty is. Using functions \(\psi \) and \(\varOmega \), we augment objective functions (4) and (5) under CRS condition as

$$\begin{aligned} PY_i= & {} -Y_i + \psi (\alpha + \beta -1) + \varOmega (-\alpha ) + \varOmega (\alpha -1)\nonumber \\&+ \varOmega (-\beta ) + \varOmega (\beta - 1) \end{aligned}$$
(30)
$$\begin{aligned} PY_s= & {} -Y_s + \psi (\delta + \gamma -1) + \varOmega (-\delta ) + \varOmega (\delta -1)\nonumber \\&+ \varOmega (-\gamma ) + \varOmega (\gamma - 1). \end{aligned}$$
(31)

Using these augmented objective functions, the constrained optimization task (8) subject to (9) is equivalent to the unconstrained optimization task: \( \min _{\mathbf {x}} \mathbf {f}(\mathbf {x})=[PY_i,PY_s] \). In our experiments, we set k1 and k2 to \(10^{12}\) and make \(\epsilon \) and \(\tau \) equal to \(10^{-8}\).

Hyper-parameter tuning

Tuning and improvising parameters such as max and min velocity, learning factors such as cognitive and social factors, inertia weight etc. is not possible through the methods that the classes in Jmetalpy provides. Tuning of these parameters is really crucial for the algorithm to converge. With respect to the range of the functions that we are trying to optimize and the constraints that are imposed on the search space, the algorithm, with the default parameters provided by the library, did not yield desirable solutions. Most of the solutions in the solution set were outside of the feasible region of the search space. We suspected that \(V\mathrm{max}\) was too large and \(V\mathrm{min}\) was too small. And hence, some changes were made in \(Jmetalpy's\) source code to make parameter tuning possible. Initially, for jth decision variable,

$$\begin{aligned} V\mathrm{max}_j= & {} \frac{\mathrm{upperbound}_j - \mathrm{lowerbound}_j}{2.0}; \\ V\mathrm{min}_j= & {} -V\mathrm{max}_j, \end{aligned}$$

where \(\mathrm{upperbound}_j\) is the largest allowable value for the jth decision variable and \(\mathrm{lowerbound}_j\) is the smallest allowable value for the jth decision variable. For our problem, these values were changed to

$$\begin{aligned} V\mathrm{max}_j = \frac{\mathrm{upperbound}_j - \mathrm{lowerbound}_j}{1000.0} \end{aligned}$$

with \(V\mathrm{min}_j\) still set to \(-V\mathrm{max}_j\). Learning factors w, \(C_1\) and \(C_2\) are sampled from a uniform distribution with specified ranges, i.e., \( w \sim U(w_{\min }, w_{\max })\), \(C_1 \sim U(C_{1\min },C_{1\max })\), and \(C_2 \sim U(C_{2\min }, C_{2\max })\). We set \(w_{\min } = w_{\max } = 0.1\), \(C_{1\min } = 0.1\), \(C_{1\max } = 0.5\), \(C_{2\min } = 0.8\) and \(C_{2\max } = 1.5\). The swarm size is set to 100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaidem, L., Saha, S., Kar, S. et al. Expert habitat: a colonization conjecture for exoplanetary habitability via penalized multi-objective optimization-based candidate validation. Eur. Phys. J. Spec. Top. 230, 2265–2283 (2021). https://doi.org/10.1140/epjs/s11734-021-00208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00208-8

Navigation